Suppr超能文献

吸附在边缘氯化纳米石墨烯上的导电金属原子的光电、磁化和热输运性质的理论研究。

Theoretical studies of optoelectronic, magnetization and heat transport properties of conductive metal adatoms adsorbed on edge chlorinated nanographenes.

作者信息

Srivastava Ruby

机构信息

Center for Molecular Modeling, CSIR-Indian Institute of Chemical Technology Hyderabad-500607 India

出版信息

RSC Adv. 2018 May 15;8(32):17723-17731. doi: 10.1039/c8ra02032a. eCollection 2018 May 14.

Abstract

The electronic structures, magnetization and quantum transport properties of edge chlorinated nanographenes (Cl NGRs) (C1-C3) functionalized with conductive metal adatoms (Al, Au and Cu) has been investigated by means of density functional theory (DFT) with periodic boundary conditions and plane wave basis functions. The adsorption energy results depict weak chemisorption and strong physisorption for Au adsorption for C1, while C2 and C3 show strong chemisorption towards the studied metals. The role of dispersion forces has also been studied with an empirical classical model. The results show that the metal clusters avoid hollow sites on the Cl NGRs surface and favor atop and bond sites. The net magnetic moment of 0.73 is observed for the (Cl NGRs-metals) system and is in reasonable agreement with the previous calculations carried out on graphene nanoribbons. The TDDFT calculations predict that the absorption spectra for metal dimer-Cl NGRs lie in the visible region. The predictive electrical conductivity of these systems suggests that the metal adatoms play an important role in the transport properties of devices and can be used for thermoelectric applications.

摘要

通过采用具有周期性边界条件和平面波基函数的密度泛函理论(DFT),研究了用导电金属吸附原子(Al、Au和Cu)功能化的边缘氯化纳米石墨烯(Cl NGRs)(C1 - C3)的电子结构、磁化和量子输运性质。吸附能结果表明,对于C1上的Au吸附,存在弱化学吸附和强物理吸附,而C2和C3对所研究的金属表现出强化学吸附。还使用经验经典模型研究了色散力的作用。结果表明,金属团簇避开Cl NGRs表面的中空位置,倾向于顶位和键合位。对于(Cl NGRs - 金属)体系,观察到净磁矩为0.73 ,这与先前对石墨烯纳米带进行的计算结果合理一致。含时密度泛函理论(TDDFT)计算预测,金属二聚体 - Cl NGRs的吸收光谱位于可见光区域。这些体系的预测电导率表明,金属吸附原子在器件的输运性质中起重要作用,可用于热电应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ab6/9080487/c1d8671ce7da/c8ra02032a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验