Suppr超能文献

金属和过渡金属吸附的石墨烯纳米带中的多样化现象

Diversified Phenomena in Metal- and Transition-Metal-Adsorbed Graphene Nanoribbons.

作者信息

Lin Shih-Yang, Tran Ngoc Thanh Thuy, Lin Ming-Fa

机构信息

Department of Physics, National Chung Cheng University, Chiayi 621301, Taiwan.

Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.

出版信息

Nanomaterials (Basel). 2021 Mar 3;11(3):630. doi: 10.3390/nano11030630.

Abstract

Adatom-adsorbed graphene nanoribbons (GNRs) have gained much attention owing to the tunable electronic and magnetic properties. The metal (Bi, Al)/transition metal (Ti, Fe, Co, Ni) atoms could provide various outermost orbitals for the multi-orbital hybridizations with the out-of-plane π bondings on the carbon honeycomb lattice, which dominate the fundamental properties of chemisorption systems. In this study, the significant similarities and differences among Bi-/Al-/Ti-/Fe-/Co-/Ni-adsorbed GNRs are thoroughly investigated by using the first-principles calculations. The main characterizations include the adsorption sites, bond lengths, stability, band structures, charge density distributions, spin- and orbital-projected density of states, and magnetic configurations. Furthermore, there exists a transformation from finite gap semiconducting to metallic behaviors, accompanied by the nonmagnetism, antiferromagnetism, or ferromagnetism. They arise from the cooperative or competitive relations among the significant chemical bonds, finite-size quantum confinement, edge structure, and spin-dependent many-body effects. The proposed theoretical framework could be further improved and generalized to explore other emergent 1D and 2D materials.

摘要

吸附有吸附原子的石墨烯纳米带(GNRs)因其可调节的电子和磁性特性而备受关注。金属(Bi、Al)/过渡金属(Ti、Fe、Co、Ni)原子可为与碳蜂窝晶格上的面外π键进行多轨道杂化提供各种最外层轨道,这主导了化学吸附系统的基本性质。在本研究中,通过使用第一性原理计算,深入研究了Bi-/Al-/Ti-/Fe-/Co-/Ni-吸附的GNRs之间的显著异同。主要表征包括吸附位点、键长、稳定性、能带结构、电荷密度分布、自旋和轨道投影态密度以及磁构型。此外,存在从有限带隙半导体到金属行为的转变,同时伴随着非磁性、反铁磁性或铁磁性。它们源于重要化学键、有限尺寸量子限制、边缘结构和自旋相关多体效应之间的协同或竞争关系。所提出的理论框架可进一步改进和推广,以探索其他新兴的一维和二维材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03bf/8000403/7350057322b5/nanomaterials-11-00630-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验