Suppr超能文献

烧结工艺对固态合成法制备的LiAlLaZrO石榴石锂离子电导率的影响。

The effect of sintering process on lithium ionic conductivity of LiAlLaZrO garnet produced by solid-state synthesis.

作者信息

Xue Wenjuan, Yang Yaping, Yang Qiaoling, Liu Yuping, Wang Lian, Chen Changguo, Cheng Renju

机构信息

College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China

Chongqing Research Center for Advanced Materials, Chongqing Academy of Science and Technology Chongqing 401123 China.

出版信息

RSC Adv. 2018 Apr 9;8(24):13083-13088. doi: 10.1039/c8ra01329b.

Abstract

Recently, solid-state electrolyte lithium lanthanum zirconium oxide garnet (LiLaZrO, LLZO) has attracted great attention due to its high room temperature conductivity of lithium ions and stability against lithium metal electrodes. The Al-doped cubic garnet LiAlLaZrO was synthesized by a conventional solid-state method at different sintering temperatures. The influence of the sintering process on the structure and ionic conductivity was investigated by X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The results showed that Li vaporization and relative density were affected by the sintering process. The synergistic effects of Li concentration and relative density determined the Li ionic conductivity. Compared with the relative density, the Li concentration plays a more important role in determining the ionic conductivity the solid-state method.

摘要

最近,固态电解质锂镧锆氧化物石榴石(LiLaZrO,LLZO)因其在室温下具有较高的锂离子电导率以及对锂金属电极的稳定性而备受关注。通过传统的固态方法在不同烧结温度下合成了铝掺杂的立方石榴石LiAlLaZrO。采用X射线衍射、电化学阻抗谱和扫描电子显微镜研究了烧结过程对结构和离子电导率的影响。结果表明,烧结过程会影响锂的蒸发和相对密度。锂浓度和相对密度的协同作用决定了锂离子电导率。与相对密度相比,锂浓度在通过固态法确定离子电导率方面起着更重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b41/9079727/d48b610393f6/c8ra01329b-f1.jpg

相似文献

4
Evaluation of Scalable Synthesis Methods for Aluminum-Substituted LiLaZrO Solid Electrolytes.
Materials (Basel). 2021 Nov 11;14(22):6809. doi: 10.3390/ma14226809.
5
Interfacial Modification of Ga-Substituted LiLaZrO against Li Metal via a Simple Doping Method.
ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59534-59543. doi: 10.1021/acsami.3c14999. Epub 2023 Dec 13.
6
Nonaqueous Polymer Combustion Synthesis of Cubic LiLaZrO Nanopowders.
ACS Appl Mater Interfaces. 2020 Jan 8;12(1):953-962. doi: 10.1021/acsami.9b19981. Epub 2019 Dec 18.
7
Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56054-56063. doi: 10.1021/acsami.1c15115. Epub 2021 Nov 17.
8
Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25709-25717. doi: 10.1021/acsami.0c01289. Epub 2020 Jun 1.
9
Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet LiLaZrO.
Nanomaterials (Basel). 2019 May 10;9(5):721. doi: 10.3390/nano9050721.
10
Synergetic Effect of Li-Ion Concentration and Triple Doping on Ionic Conductivity of LiLaZrO Solid Electrolyte.
Nanomaterials (Basel). 2022 Aug 26;12(17):2946. doi: 10.3390/nano12172946.

引用本文的文献

1
2
Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes.
Materials (Basel). 2023 Mar 21;16(6):2510. doi: 10.3390/ma16062510.
3
Mitigating Interfacial Mismatch between Lithium Metal and Garnet-Type Solid Electrolyte by Depositing Metal Nitride Lithiophilic Interlayer.
ACS Appl Energy Mater. 2022 Jan 24;5(1):648-657. doi: 10.1021/acsaem.1c03157. Epub 2022 Jan 7.

本文引用的文献

1
Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12".
Phys Chem Chem Phys. 2011 Nov 21;13(43):19378-92. doi: 10.1039/c1cp22108f. Epub 2011 Oct 10.
2
A lithium superionic conductor.
Nat Mater. 2011 Jul 31;10(9):682-6. doi: 10.1038/nmat3066.
3
Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor.
Inorg Chem. 2011 Feb 7;50(3):1089-97. doi: 10.1021/ic101914e. Epub 2010 Dec 28.
4
Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12).
Angew Chem Int Ed Engl. 2007;46(41):7778-81. doi: 10.1002/anie.200701144.
5
Lithium dimer formation in the Li-conducting garnets Li(5+x)Ba(x)La(3-x)Ta2O12 (0 < x < or =1.6).
Chem Commun (Camb). 2007 May 28(20):2048-50. doi: 10.1039/b700369b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验