Nguyen Minh Hai, Park Sangbaek
Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea.
Nanomaterials (Basel). 2022 Aug 26;12(17):2946. doi: 10.3390/nano12172946.
LiLaZrO (LLZO) is a promising and safe solid electrolyte for all-solid-state batteries. To achieve high ionic conductivity of LLZO, stabilizing the cubic phase and reducing Li loss during the sintering process is essential. Therefore, reducing the sintering temperature, which increases the sintering time for high-density pellets, is necessary. Herein, we investigate the change in the crystal structure, morphology, and Li ionic conductivity of LLZO pellets by triple doping with Al, Ga, and Ta and modulating the variation in initial Li concentrations. Interestingly, the proportion of the conductive cubic phase increased with increasing Li stoichiometry by 1.1 times, and this tendency was further accelerated by triple doping. The synergetic effects of triple doping and Li concentration also minimized Li loss during sintering. Accordingly, it provided a high-quality LLZO pellet with good ionic conductivity (3.6 × 10 S cm) and high relative density (97.8%). Notably, the LLZO pellet was obtained using a very short sintering process (40 min). Considering that the most time-consuming step is the sintering process for LLZO, this study can provide guidelines for the fast production and commercialization of LLZO electrolytes with high ionic conductivity.
LiLaZrO(LLZO)是一种用于全固态电池的很有前景且安全的固体电解质。为了实现LLZO的高离子电导率,稳定立方相并减少烧结过程中的锂损失至关重要。因此,降低烧结温度是必要的,尽管这会增加高密度颗粒的烧结时间。在此,我们通过用铝、镓和钽进行三重掺杂并调节初始锂浓度的变化,研究了LLZO颗粒的晶体结构、形态和锂离子电导率的变化。有趣的是,导电立方相的比例随着锂化学计量比增加1.1倍而增加,并且这种趋势通过三重掺杂进一步加速。三重掺杂和锂浓度的协同效应也使烧结过程中的锂损失最小化。因此,它提供了一种具有良好离子电导率(3.6×10 S/cm)和高相对密度(97.8%)的高质量LLZO颗粒。值得注意的是,LLZO颗粒是通过非常短的烧结过程(40分钟)获得的。考虑到最耗时的步骤是LLZO的烧结过程,这项研究可以为快速生产和商业化具有高离子电导率的LLZO电解质提供指导。