Brissonnet Yoan, Compain Guillaume, Renoux Brigitte, Krammer Eva-Maria, Daligault Franck, Deniaud David, Papot Sébastien, Gouin Sébastien G
Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques 2, rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France.
Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP, Université de Poitiers, UMR-CNRS 7285 4 Rue Michel Brunet 86022 Poitiers France.
RSC Adv. 2019 Dec 4;9(69):40263-40267. doi: 10.1039/c9ra08847d. eCollection 2019 Dec 3.
Determination of glycosidase hydrolysis kinetics for a monovalent sugar substrate is relatively straightforward and classically achieved by monitoring the fluorescence signal released from the sugar-conjugated probe after enzymatic hydrolysis. Naturally occuring sugar epitopes are, however, often clustered on biopolymers or at biological surfaces, and previous reports have shown that glycosidase hydrolytic rates can differ greatly with multivalent presentation of the sugar epitopes. New probes are needed to make it easier to interpret the importance of substrate clustering towards a specific enzyme activity. In this work, we developed multivalent glucuronide substrates attached to fluorescent amino-coumarines through self-immolative linkers to enable real time-monitoring of the hydrolysing activity of β-glucuronidases (GUS) towards clustered substrates. GUS are exoglycosidases of considerable therapeutic interest cleaving β-d-glucuronides and are found in the lysosomes, in the tumoral microenvironment, and are expressed by gut microbiota. GUS showed a much lower catalytic efficiency in hydrolysing clustered glucuronides due to a significantly lower enzymatic velocity and affinity for the substrates. GUS was 52-fold less efficient in hydrolysing GlcA substrates presented on an octameric silsequioxane (COSS) compared with a monovalent GlcA of similar chemical structure. Thus, kinetic and thermodynamic data of GUS hydrolysis towards multivalent glucuronides were easily obtained with these new types of enzymatically-triggered probes. More generally, adapting the substrate nature and valency of these new probes, should improve understanding of the impact of multivalency for a specific enzyme.
对于单价糖底物的糖苷酶水解动力学测定相对简单,传统方法是通过监测酶促水解后糖缀合探针释放的荧光信号来实现。然而,天然存在的糖表位通常聚集在生物聚合物上或生物表面,先前的报道表明,糖苷酶的水解速率会因糖表位的多价呈现而有很大差异。需要新的探针来更易于解读底物聚集对特定酶活性的重要性。在这项工作中,我们开发了通过自牺牲连接子连接到荧光氨基香豆素上的多价葡糖醛酸底物,以实时监测β-葡糖醛酸酶(GUS)对聚集底物的水解活性。GUS是具有重要治疗意义的外切糖苷酶,可切割β-D-葡糖醛酸,存在于溶酶体、肿瘤微环境中,并由肠道微生物群表达。由于酶促反应速度和对底物的亲和力显著降低,GUS在水解聚集的葡糖醛酸时催化效率低得多。与具有相似化学结构的单价GlcA相比,GUS水解八聚倍半硅氧烷(COSS)上呈现的GlcA底物的效率低52倍。因此,使用这些新型酶触发探针很容易获得GUS水解多价葡糖醛酸的动力学和热力学数据。更普遍地说,调整这些新探针的底物性质和价态,应该会增进对多价性对特定酶影响的理解。