文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用L.提取物绿色合成铜/氧化镁纳米复合材料及其在水介质中还原亚甲基蓝、刚果红和硝基化合物的催化活性研究。

Green synthesis of a Cu/MgO nanocomposite by  L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media.

作者信息

Nasrollahzadeh Mahmoud, Issaabadi Zahra, Sajadi S Mohammad

机构信息

Department of Chemistry, Faculty of Science, University of Qom Qom 3716146611 Iran

Center of Environmental Researches, University of Qom Qom Iran.

出版信息

RSC Adv. 2018 Jan 18;8(7):3723-3735. doi: 10.1039/c7ra13491f. eCollection 2018 Jan 16.


DOI:10.1039/c7ra13491f
PMID:35542927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9077691/
Abstract

This work reports the green synthesis of a Cu/MgO nanocomposite using L. extract as a reducing agent without stabilizers or surfactants. The immobilization of Cu NPs was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). The Cu/MgO nanocomposite acts as a heterogeneous and recyclable catalyst for the reduction of 4-nitrophenol (4-NP), 2,4-dinitrophenylhydrazine (2,4-DNPH), methylene blue (MB) and congo red (CR) using sodium borohydride in aqueous media at room temperature. The catalyst was recycled multiple times without any significant loss of its catalytic activity.

摘要

这项工作报道了以L.提取物作为还原剂,在无稳定剂或表面活性剂的情况下绿色合成铜/氧化镁纳米复合材料。通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)和能量色散X射线光谱(EDS)证实了铜纳米颗粒的固定化。在室温下的水介质中,铜/氧化镁纳米复合材料作为一种多相且可循环使用的催化剂,用于硼氢化钠还原4-硝基苯酚(4-NP)、2,4-二硝基苯肼(2,4-DNPH)、亚甲基蓝(MB)和刚果红(CR)。该催化剂可多次循环使用,且其催化活性无任何显著损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/be94688ca9ca/c7ra13491f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/e7ccd819c7c1/c7ra13491f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/941230cde231/c7ra13491f-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/955c8638b134/c7ra13491f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/42366fcfeefd/c7ra13491f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/1205e4f17455/c7ra13491f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/2c014bf820dd/c7ra13491f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/6272139cb3fa/c7ra13491f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/f8a0c4732411/c7ra13491f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/e4ea33651883/c7ra13491f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0c00c8eb317d/c7ra13491f-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0dcefb05d7e3/c7ra13491f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/fe44ce901ffd/c7ra13491f-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/23ecfae4955b/c7ra13491f-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/af3445d18889/c7ra13491f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0fa84fbc513c/c7ra13491f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/26c27b6442f2/c7ra13491f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/baf5024a731c/c7ra13491f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/5115d5cccbae/c7ra13491f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/be94688ca9ca/c7ra13491f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/e7ccd819c7c1/c7ra13491f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/941230cde231/c7ra13491f-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/955c8638b134/c7ra13491f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/42366fcfeefd/c7ra13491f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/1205e4f17455/c7ra13491f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/2c014bf820dd/c7ra13491f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/6272139cb3fa/c7ra13491f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/f8a0c4732411/c7ra13491f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/e4ea33651883/c7ra13491f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0c00c8eb317d/c7ra13491f-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0dcefb05d7e3/c7ra13491f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/fe44ce901ffd/c7ra13491f-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/23ecfae4955b/c7ra13491f-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/af3445d18889/c7ra13491f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/0fa84fbc513c/c7ra13491f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/26c27b6442f2/c7ra13491f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/baf5024a731c/c7ra13491f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/5115d5cccbae/c7ra13491f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a8/9077691/be94688ca9ca/c7ra13491f-f15.jpg

相似文献

[1]
Green synthesis of a Cu/MgO nanocomposite by  L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media.

RSC Adv. 2018-1-18

[2]
Facile synthesis of Cu NPs@FeO-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities.

Food Chem Toxicol. 2022-10

[3]
Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

J Colloid Interface Sci. 2017-3-15

[4]
Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes.

J Colloid Interface Sci. 2016-5-15

[5]
Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time.

Environ Sci Pollut Res Int. 2017-2

[6]
Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water.

J Colloid Interface Sci. 2016-1-15

[7]
A Cu(ii) complex supported on FeO@SiO as a magnetic heterogeneous catalyst for the reduction of environmental pollutants.

RSC Adv. 2022-9-20

[8]
Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water.

J Colloid Interface Sci. 2017-6-15

[9]
Green synthesis of Ag/Fe(3)O(4) nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity.

J Colloid Interface Sci. 2017-7-1

[10]
Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol.

Beilstein J Nanotechnol. 2015-12-3

引用本文的文献

[1]
Copper-based nanoparticles for the removal of the crystal violet dye degradation and adsorption: a comparative account.

RSC Adv. 2025-8-6

[2]
A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications.

Front Chem. 2024-8-14

[3]
Laser-Assisted Preparation of TiO/Carbon/Ag Nanocomposite for Degradation of Organic Pollutants.

Materials (Basel). 2024-8-20

[4]
Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease.

Int J Mol Sci. 2024-5-21

[5]
Role of transition metals in coinage metal nanoclusters for the remediation of toxic dyes in aqueous systems.

RSC Adv. 2024-4-9

[6]
Carbon sphere doped CdS quantum dots served as a dye degrader and their bactericidal behavior analysed with molecular docking analysis.

Nanoscale Adv. 2023-11-15

[7]
Antimicrobial potential and rhodamine B dye degradation using graphitic carbon nitride and polyvinylpyrrolidone doped bismuth tungstate supported with in silico molecular docking studies.

Sci Rep. 2023-10-19

[8]
Bactericidal Action and Industrial Dye Degradation of Graphene Oxide and Polyacrylic Acid-Doped SnO Quantum Dots: Molecular Docking Study.

ACS Omega. 2023-2-6

[9]
Synthesis and characterization of silver-indium and antimony selenide: role in photocatalytic degradation of dyes.

Heliyon. 2022-10-14

[10]
Cu-Doped 1D Hydroxyapatite as a Highly Active Catalyst for the Removal of 4-Nitrophenol and Dyes from Water.

ACS Omega. 2022-7-21

本文引用的文献

[1]
Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets.

Dalton Trans. 2015-5-21

[2]
Catalytic degradation of organic dyes using biosynthesized silver nanoparticles.

Micron. 2013-10-19

[3]
Synthesis of metallic nanoparticles using plant extracts.

Biotechnol Adv. 2013-1-12

[4]
Cu-doped TiO(2) nanoparticles for photocatalytic disinfection of bacteria under visible light.

J Colloid Interface Sci. 2010-8-10

[5]
Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation.

Chem Commun (Camb). 2010-7-26

[6]
Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.

Colloids Surf B Biointerfaces. 2009-10-15

[7]
Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH.

J Hazard Mater. 2009-10-15

[8]
Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes.

J Hazard Mater. 2009-3-15

[9]
Rapid biological synthesis of silver nanoparticles using plant leaf extracts.

Bioprocess Biosyst Eng. 2009-1

[10]
Antimicrobial activity of flavonoids.

Int J Antimicrob Agents. 2005-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索