Suppr超能文献

基于半参数多层次混合模型的基于集合的遗传关联推断的高效测试和效应大小估计。

Efficient testing and effect size estimation for set-based genetic association inference via semiparametric multilevel mixture modeling.

机构信息

Center for Spatial Information Science, The University of Tokyo, Chiba, Japan.

Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan.

出版信息

Biom J. 2022 Aug;64(6):1142-1152. doi: 10.1002/bimj.202100234. Epub 2022 May 11.

Abstract

In genetic association studies, rare variants with extremely low allele frequencies play a crucial role in complex traits. Therefore, set-based testing methods that jointly assess the effects of groups of single nucleotide polymorphisms (SNPs) were developed to increase the powers of the association tests. However, these powers are still insufficient, and precise estimations of the effect sizes of individual SNPs are largely impossible. In this article, we provide an efficient set-based statistical inference framework that addresses both of these important issues simultaneously using an empirical Bayes method with semiparametric multilevel mixture modeling. We propose to utilize the hierarchical model that incorporates variations in set-specific effects and to apply the optimal discovery procedure (ODP) that achieves the largest overall power in multiple significance testing. In addition, we provide an optimal "set-based" estimator of the empirical distribution of effect sizes. The efficiency of the proposed methods is demonstrated through application to a genome-wide association study of coronary artery disease and through simulation studies. The results demonstrated numerous rare variants with large effect sizes for coronary artery disease, and the number of significant sets detected by the ODP was much greater than those identified by existing methods.

摘要

在遗传关联研究中,具有极低等位基因频率的罕见变异在复杂性状中起着至关重要的作用。因此,开发了基于集合的测试方法,这些方法联合评估一组单核苷酸多态性 (SNP) 的影响,以提高关联测试的功效。然而,这些功效仍然不足,而且个体 SNP 效应大小的精确估计在很大程度上是不可能的。在本文中,我们提供了一个有效的基于集合的统计推断框架,该框架使用具有半参数多层次混合建模的经验贝叶斯方法同时解决了这两个重要问题。我们建议利用包含集合特定效应变化的分层模型,并应用最优发现程序 (ODP),以在多次显著性检验中实现最大的总体功效。此外,我们还提供了效应大小的经验分布的最优“基于集合”估计量。通过对冠状动脉疾病的全基因组关联研究的应用和模拟研究,证明了所提出方法的效率。结果表明,冠状动脉疾病存在许多具有较大效应大小的罕见变异,并且 ODP 检测到的显著集合数量远远超过了现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验