Suppr超能文献

用于自动去除皮肤电活动中运动伪迹的深度卷积自动编码器

A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity.

作者信息

Hossain Md-Billal, Posada-Quintero Hugo F, Chon Ki H

出版信息

IEEE Trans Biomed Eng. 2022 Dec;69(12):3601-3611. doi: 10.1109/TBME.2022.3174509. Epub 2022 Nov 21.

Abstract

OBJECTIVE

This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.

METHODS

we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT).

RESULTS

Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNR) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68.

CONCLUSION

The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails.

SIGNIFICANCE

Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.

摘要

目的

本研究旨在开发一种强大的、数据驱动的从皮肤电活动(EDA)信号中去除自动运动伪迹(MA)的技术。

方法

我们提出了一种深度卷积自动编码器(DCAE)方法用于去除EDA信号中的自动MA。我们的模型使用了几个公开可用的数据集进行训练,这些数据集是通过各种各样的刺激收集的,以引起EDA反应;样本量很大([公式:见正文])。我们使用高斯白噪声(GWN)和在我们实验室中使用新型电路收集的真实MA数据记录来训练和验证我们的DCAE网络。我们进一步在两个独立的、未见过的数据集上评估和比较了我们的DCAE模型与现有方法的性能,这两个数据集分别是Chon实验室运动伪迹数据集II(CMAD II)和中枢神经系统氧中毒数据集(CNS - OT)。

结果

与之前的三种方法相比,我们的DCAE模型在MA损坏的数据上显示出显著更高的信噪功率比改善(SNR)和更低的均方误差(MSE)(平均[公式:见正文],MSE = 0.028)。此外,来自CMAD II数据集的重建EDA与静止手部的参考清洁数据的平均相关值为0.78(与其他方法相比在统计学上显著更高),而原始的MA损坏数据的相关值仅为0.68。

结论

本文给出的结果表明,我们的DCAE能够在现有方法失效的情况下去除高强度的MA。

意义

所提出的DCAE模型可用于恢复大量原本会被丢弃的EDA数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验