FB Life Science Engineering (LSE), Technische Hochschule Mittelhessen (THM), Institut für Biomedizinische Technik (IBMT) Gießen, Germany.
Department of Biomedical Engineering, University of Duhok, Duhok, Kurdistan Region, Iraq.
Biomed Tech (Berl). 2023 Feb 1;68(3):275-284. doi: 10.1515/bmt-2022-0199. Print 2023 Jun 27.
Denoising autoencoder (DAE) with a single hidden layer of neurons can recode a signal, i.e., converting the original signal into a noise-reduced signal. The DAE approach has shown a good performance in denoising bio-signals, like electrocardiograms (ECG). In this paper, we study the effect of correlated, uncorrelated and jittered datasets on the performance of the DAE model.
Vectors of multiple concatenated ECG segments of simultaneously recorded Einthoven recordings I, II, III are considered to establish the following dataset cases: (1) correlated, (2) uncorrelated, and (3) jittered. We consider our previous work in finding the optimal number of hidden neurons receiving the input signal with respect to signal quality and computational burden by applying Akaike's information criterion. To evaluate DAE, these datasets are corrupted with six types of noise, namely mix noise (MX), motion artifact noise (MA), electrode movement (EM), baseline wander (BW), Gaussian white noise (GWN) and high-frequency noise (HFN), to simulate real case scenario. Spectral analysis is used to study the effects of noise whose power spectrum may overlap with the power spectrum of the wanted signal on DAE performance.
The simulation results show (a) that the number of hidden neurons to denoise multiple correlated ECG is much lower than for jittered signals, (b) QRS-complex based ECG alignment preferable, (c) noises with slightly overlapping power spectrum, like BW and HFN, can be easily removed with sufficient number of neurons, while the noise with completely overlapping spectrum, like GWN, requires a very low-dimensional and thus coarser reduction to recover the signal.
The performance of DAE model in terms of signal-to-noise ratio improvement and the required number of hidden neurons can be improved by utilizing the correlation among simultaneous Einthoven I, II, III records.
具有单个隐藏层神经元的去噪自动编码器(DAE)可以对信号进行重新编码,即将原始信号转换为降噪信号。DAE 方法在去噪生物信号(如心电图(ECG))方面表现出良好的性能。在本文中,我们研究了相关、不相关和抖动数据集对 DAE 模型性能的影响。
考虑同时记录的 Einthoven 记录 I、II、III 的多个串联 ECG 段的向量,以建立以下数据集情况:(1)相关,(2)不相关,和(3)抖动。我们考虑了我们之前的工作,通过应用赤池信息量准则来找到接收输入信号的最佳隐藏神经元数量,以获得信号质量和计算负担。为了评估 DAE,这些数据集受到六种类型的噪声的污染,即混合噪声(MX)、运动伪影噪声(MA)、电极运动(EM)、基线漂移(BW)、高斯白噪声(GWN)和高频噪声(HFN),以模拟真实情况。频谱分析用于研究噪声的影响,这些噪声的功率谱可能与期望信号的功率谱重叠,对 DAE 性能的影响。
模拟结果表明:(a)去噪多个相关 ECG 的隐藏神经元数量远低于抖动信号,(b)基于 QRS 复合体的 ECG 对齐更好,(c)具有轻微重叠功率谱的噪声,如 BW 和 HFN,可以用足够数量的神经元轻松去除,而具有完全重叠频谱的噪声,如 GWN,则需要非常低维的、因此更粗糙的降低来恢复信号。
通过利用同时的 Einthoven I、II、III 记录之间的相关性,可以提高 DAE 模型在信噪比提高和所需隐藏神经元数量方面的性能。