Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G2C1, Canada.
Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Sci Adv. 2022 May 6;8(18):eabj1624. doi: 10.1126/sciadv.abj1624.
Several knowledgebases are manually curated to support clinical interpretations of thousands of hotspot somatic mutations in cancer. However, discrepancies or even conflicting interpretations are observed among these databases. Furthermore, many previously undocumented mutations may have clinical or functional impacts on cancer but are not systematically interpreted by existing knowledgebases. To address these challenges, we developed CancerVar to facilitate automated and standardized interpretations for 13 million somatic mutations based on the AMP/ASCO/CAP 2017 guidelines. We further introduced a deep learning framework to predict oncogenicity for these variants using both functional and clinical features. CancerVar achieved satisfactory performance when compared to several independent knowledgebases and, using clinically curated datasets, demonstrated practical utility in classifying somatic variants. In summary, by integrating clinical guidelines with a deep learning framework, CancerVar facilitates clinical interpretation of somatic variants, reduces manual work, improves consistency in variant classification, and promotes implementation of the guidelines.
有几个知识库经过人工整理,以支持对癌症中数千个热点体细胞突变的临床解释。然而,这些数据库之间存在差异,甚至存在相互矛盾的解释。此外,许多以前未记录的突变可能对癌症有临床或功能影响,但现有知识库并没有对其进行系统的解释。为了解决这些挑战,我们开发了 CancerVar,以根据 AMP/ASCO/CAP 2017 指南,为 1300 万种体细胞突变提供自动化和标准化的解释。我们进一步引入了一个深度学习框架,使用功能和临床特征来预测这些变体的致癌性。与几个独立的知识库相比,CancerVar 达到了令人满意的性能,并且使用临床整理的数据集,在体细胞变体分类方面表现出了实际的效用。总之,通过将临床指南与深度学习框架相结合,CancerVar 促进了体细胞变体的临床解释,减少了人工工作,提高了变体分类的一致性,并促进了指南的实施。