Suppr超能文献

用于模拟电喷雾水滴中质子跳跃的 Grotthuss 分子动力学模拟。

Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.

机构信息

Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3781-3794. doi: 10.1021/acs.jctc.2c00001. Epub 2022 May 11.

Abstract

Excess protons in water exhibit unique transport properties because they can rapidly hop along H-bonded water wires. Considerable progress has been made in unraveling this Grotthuss diffusion mechanism using quantum mechanical-based computational techniques. Unfortunately, high computational cost tends to restrict those techniques to small systems and short times. Molecular dynamics (MD) simulations can be applied to much larger systems and longer time windows. However, standard MD methods do not permit the dissociation/formation of covalent bonds, such that Grotthuss diffusion cannot be captured. Here, we bridge this gap by combining atomistic MD simulations (using Gromacs and TIP4P/2005 water) with proton hopping. Excess protons are modeled as hydronium ions that undergo HO + HO → HO + HO transitions. In accordance with ab initio MD data, these Grotthuss hopping events are executed in "bursts" with quasi-instantaneous hopping across one or more waters. The bursts are separated by regular MD periods during which HO ions undergo Brownian diffusion. The resulting proton diffusion coefficient agrees with the literature value. We apply this Grotthuss MD technique to highly charged water droplets that are in a size regime encountered during electrospray ionization (5 nm radius, ∼17,000 HO). The droplets undergo rapid solvent evaporation and occasional HO ejection, keeping them at ca. 81% of the Rayleigh limit. The simulated behavior is consistent with phase Doppler anemometry data. The Grotthuss MD technique developed here should be useful for modeling the behavior of various proton-containing systems that are too large for high-level computational approaches. In particular, we envision future applications related to electrospray processes, where earlier simulations used metal cations while in reality excess protons dominate.

摘要

水中过量的质子表现出独特的输运性质,因为它们可以沿着氢键水线快速跳跃。使用基于量子力学的计算技术,人们在揭示这种格罗特斯扩散机制方面已经取得了相当大的进展。不幸的是,高计算成本往往限制了这些技术在小系统和短时间内的应用。分子动力学(MD)模拟可以应用于更大的系统和更长的时间窗口。然而,标准的 MD 方法不允许共价键的解离/形成,因此无法捕捉格罗特斯扩散。在这里,我们通过将原子分子 MD 模拟(使用 Gromacs 和 TIP4P/2005 水)与质子跳跃相结合来弥合这一差距。过量的质子被建模为质子化的氢离子,它们经历 HO + HO → HO + HO 转变。根据从头算 MD 数据,这些格罗特斯跳跃事件以“爆发”的形式发生,质子在一个或多个水中几乎瞬间跳跃。爆发之间是常规 MD 周期,在该周期中 HO 离子经历布朗扩散。由此产生的质子扩散系数与文献值一致。我们将这种格罗特斯 MD 技术应用于高电荷的水滴,这些水滴处于电喷雾电离过程中遇到的尺寸范围(5nm 半径,约 17000HO)。液滴经历快速溶剂蒸发和偶尔的 HO 喷射,使其保持在约 81%的瑞利极限。模拟行为与相位多普勒风速仪数据一致。这里开发的格罗特斯 MD 技术应该对模拟各种质子包含系统的行为有用,这些系统太大,无法使用高级计算方法。特别是,我们设想了与电喷雾过程相关的未来应用,在这些应用中,早期的模拟使用金属阳离子,而实际上过量的质子占主导地位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验