Yaw Chong Tak, Koh Siaw Paw, Sandhya Madderla, Ramasamy Devarajan, Kadirgama Kumaran, Benedict Foo, Ali Kharuddin, Tiong Sieh Kiong, Abdalla Ahmed N, Chong Kok Hen
Institute of Sustainable Energy, Universiti Tenaga Nasional (The Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia.
College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Malaysia.
Nanomaterials (Basel). 2023 May 10;13(10):1596. doi: 10.3390/nano13101596.
Response surface methodology (RSM) is used in this study to optimize the thermal characteristics of single graphene nanoplatelets and hybrid nanofluids utilizing the miscellaneous design model. The nanofluids comprise graphene nanoplatelets and graphene nanoplatelets/cellulose nanocrystal nanoparticles in the base fluid of ethylene glycol and water (60:40). Using response surface methodology (RSM) based on central composite design (CCD) and mini tab 20 standard statistical software, the impact of temperature, volume concentration, and type of nanofluid is used to construct an empirical mathematical formula. Analysis of variance (ANOVA) is applied to determine that the developed empirical mathematical analysis is relevant. For the purpose of developing the equations, 32 experiments are conducted for second-order polynomial to the specified outputs such as thermal conductivity and viscosity. Predicted estimates and the experimental data are found to be in reasonable arrangement. In additional words, the models could expect more than 85% of thermal conductivity and viscosity fluctuations of the nanofluid, indicating that the model is accurate. Optimal thermal conductivity and viscosity values are 0.4962 W/m-K and 2.6191 cP, respectively, from the results of the optimization plot. The critical parameters are 50 °C, 0.0254%, and the category factorial is GNP/CNC, and the relevant parameters are volume concentration, temperature, and kind of nanofluid. From the results plot, the composite is 0.8371. The validation results of the model during testing indicate the capability of predicting the optimal experimental conditions.
本研究采用响应面法(RSM),利用杂项设计模型优化单石墨烯纳米片和混合纳米流体的热特性。纳米流体由石墨烯纳米片以及在乙二醇和水(60:40)的基础流体中的石墨烯纳米片/纤维素纳米晶体纳米颗粒组成。基于中心复合设计(CCD)和Minitab 20标准统计软件,采用响应面法(RSM),利用温度、体积浓度和纳米流体类型的影响构建经验数学公式。应用方差分析(ANOVA)来确定所建立的经验数学分析是相关的。为了建立方程,针对诸如热导率和粘度等指定输出进行了32次二阶多项式实验。预测估计值与实验数据合理吻合。换句话说,该模型能够预测纳米流体超过85%的热导率和粘度波动,表明该模型是准确的。从优化图的结果来看,最佳热导率和粘度值分别为0.4962 W/m-K和2.6191 cP。关键参数为50°C、0.0254%,类别因子为GNP/CNC,相关参数为体积浓度、温度和纳米流体种类。从结果图来看,复合材料为0.8371。模型在测试期间的验证结果表明其能够预测最佳实验条件。