Suppr超能文献

新兴量子技术电学材料的噪声和退相基准测试。

Benchmarking Noise and Dephasing in Emerging Electrical Materials for Quantum Technologies.

机构信息

Department of Physics, Indian Institute of Science, Bengaluru, 560012, India.

Experimentelle Physik III, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.

出版信息

Adv Mater. 2023 Jul;35(27):e2109671. doi: 10.1002/adma.202109671. Epub 2022 Sep 22.

Abstract

As quantum technologies develop, a specific class of electrically conducting materials is rapidly gaining interest because they not only form the core quantum-enabled elements in superconducting qubits, semiconductor nanostructures, or sensing devices, but also the peripheral circuitry. The phase coherence of the electronic wave function in these emerging materials will be crucial when incorporated in the quantum architecture. The loss of phase memory, or dephasing, occurs when a quantum system interacts with the fluctuations in the local electromagnetic environment, which manifests in "noise" in the electrical conductivity. Hence, characterizing these materials and devices therefrom, for quantum applications, requires evaluation of both dephasing and noise, although there are very few materials where these properties are investigated simultaneously. Here, the available data on magnetotransport and low-frequency fluctuations in electrical conductivity are reviewed to benchmark the dephasing and noise. The focus is on new materials that are of direct interest to quantum technologies. The physical processes causing dephasing and noise in these systems are elaborated, the impact of both intrinsic and extrinsic parameters from materials synthesis and devices realization are evaluated, and it is hoped that a clearer pathway to design and characterize both material and devices for quantum applications is thus provided.

摘要

随着量子技术的发展,一类特殊的导电材料迅速引起了人们的兴趣,因为它们不仅构成了超导量子比特、半导体纳米结构或传感设备核心的量子功能元件,而且还构成了外围电路。在这些新兴材料中,电子波函数的相位相干性对于纳入量子架构至关重要。当量子系统与局部电磁场的涨落相互作用时,相位记忆(或退相)会丢失,这表现为电导率中的“噪声”。因此,为了量子应用,对这些材料和器件进行特征描述需要评估退相和噪声,尽管很少有材料同时研究这些性质。在这里,回顾了磁输运和电导率低频涨落的现有数据,以基准退相和噪声。重点是直接应用于量子技术的新材料。阐述了这些系统中退相和噪声产生的物理过程,评估了材料合成和器件实现过程中内在和外在参数的影响,希望为设计和表征量子应用的材料和器件提供更清晰的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验