Suppr超能文献

模拟攻击揭示了卒中后失语症中的病变如何影响网络属性。

Simulated Attack Reveals How Lesions Affect Network Properties in Poststroke Aphasia.

机构信息

Department of Psychology, Drexel University, Philadelphia, Pennsylvania 19104

Department of Neurology, Drexel University, Philadelphia, Pennsylvania 19104.

出版信息

J Neurosci. 2022 Jun 15;42(24):4913-4926. doi: 10.1523/JNEUROSCI.1163-21.2022. Epub 2022 May 11.

Abstract

Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke. Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.

摘要

失语症是一种由中风引起的常见认知综合征。由于罕见的发病前影像学和病变的异质性,使得病变的局部影响、全局解剖网络组织和失语症症状之间的联系变得模糊不清。我们在人类中应用了一种模拟攻击方法,通过模拟 36 名健康对照(15 名女性)脑网络中 39 例中风病变(16 名女性)对解剖网络拓扑的影响,来研究病变的局部影响。我们重点关注被认为支持大脑整体功能和弹性的整体网络组织的度量标准,包括全脑和左半球。在从网络拓扑度量和行为评分(西方失语症成套测验失语症商数(WAB-AQ)、神经心理学成套测验中获得的四个行为因子评分和因子总和)中去除病变体积后,我们比较了模拟中风后连接组学解释的行为方差与随机置换数据中观察到的行为方差。全脑和左半球解剖网络拓扑的全局度量标准在解释 WAB-AQ 和词汇因子评分时,除了病变体积和零置换外,还可以解释 10%或更多的方差。与 FA 网络相比,轨迹网络提供了更可靠的点估计。在 FA 网络中,权重和网络效率对预测 WAB-AQ 的影响最大。总体而言,我们的研究结果表明,在预测整体失语症严重程度时,全局网络测量值除了病变体积外,还提供了适度的统计价值,但在预测特定行为方面的价值较小。估计值的差异可能是由发病前的能力、去传入和失神经支配以及中风后的神经可塑性引起的。中风后,剩余的神经解剖结构维持认知并支持恢复。然而,研究通常使用小的、横截面的样本,这些样本不能完全模拟病变与影响网络的其他变量之间的相互作用。需要采用替代方法来解释这些影响。“模拟攻击”模型是一种计算方法,它对大脑施加虚拟损伤,并测量其潜在的后果。我们使用模拟攻击模型来估计对解剖网络的模拟损伤如何可以解释语言表现。总的来说,我们的研究结果表明,全局网络测量值可以适度地预测整体失语症严重程度,但在预测特定行为方面的价值较小。这些发现表明,为了稳健地预测失语症患者的个体结局,可能需要更具理论精度的网络模型。

相似文献

1
Simulated Attack Reveals How Lesions Affect Network Properties in Poststroke Aphasia.
J Neurosci. 2022 Jun 15;42(24):4913-4926. doi: 10.1523/JNEUROSCI.1163-21.2022. Epub 2022 May 11.
2
Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech.
J Neurosci. 2016 Jun 22;36(25):6668-79. doi: 10.1523/JNEUROSCI.4396-15.2016.
3
Language Recovery after Brain Injury: A Structural Network Control Theory Study.
J Neurosci. 2022 Jan 26;42(4):657-669. doi: 10.1523/JNEUROSCI.1096-21.2021. Epub 2021 Dec 6.
4
Advanced Brain Age and Chronic Poststroke Aphasia Severity.
Neurology. 2023 Mar 14;100(11):e1166-e1176. doi: 10.1212/WNL.0000000000201693. Epub 2022 Dec 16.
5
Involvement of Thalamocortical Networks in Patients With Poststroke Thalamic Aphasia.
Neurology. 2023 Jan 31;100(5):e485-e496. doi: 10.1212/WNL.0000000000201488. Epub 2022 Oct 27.
6
Mapping Language Networks Using the Structural and Dynamic Brain Connectomes.
eNeuro. 2017 Nov 6;4(5). doi: 10.1523/ENEURO.0204-17.2017. eCollection 2017 Sep-Oct.
7
Brain network topology influences response to intensive comprehensive aphasia treatment.
NeuroRehabilitation. 2018;43(1):63-76. doi: 10.3233/NRE-182428.
8
Preservation of structural brain network hubs is associated with less severe post-stroke aphasia.
Restor Neurol Neurosci. 2016;34(1):19-28. doi: 10.3233/RNN-150511.
10
The canonical semantic network supports residual language function in chronic post-stroke aphasia.
Hum Brain Mapp. 2017 Mar;38(3):1636-1658. doi: 10.1002/hbm.23476. Epub 2016 Dec 16.

引用本文的文献

1
Lesion-Induced Changes to the Network Controllability of the Right Pars Triangularis in Aphasia.
Neurobiol Lang (Camb). 2025 Sep 2;6. doi: 10.1162/nol.a.11. eCollection 2025.
2
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury.
Front Neuroinform. 2024 Mar 25;18:1382372. doi: 10.3389/fninf.2024.1382372. eCollection 2024.
3
The evolution of whole-brain turbulent dynamics during recovery from traumatic brain injury.
Netw Neurosci. 2024 Apr 1;8(1):158-177. doi: 10.1162/netn_a_00346. eCollection 2024.

本文引用的文献

1
A Whole-Cortex Probabilistic Diffusion Tractography Connectome.
eNeuro. 2021 Feb 23;8(1). doi: 10.1523/ENEURO.0416-20.2020. Print 2021 Jan-Feb.
2
Structural brain networks and functional motor outcome after stroke-a prospective cohort study.
Brain Commun. 2020 Jan 10;2(1):fcaa001. doi: 10.1093/braincomms/fcaa001. eCollection 2020.
3
Altered topology of large-scale structural brain networks in chronic stroke.
Brain Commun. 2019 Oct 4;1(1):fcz020. doi: 10.1093/braincomms/fcz020. eCollection 2019.
4
What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis.
Psychol Sci. 2020 Jul;31(7):792-806. doi: 10.1177/0956797620916786. Epub 2020 Jun 3.
5
Graph theoretical quantification of white matter reorganization after cortical stroke in mice.
Neuroimage. 2020 Aug 15;217:116873. doi: 10.1016/j.neuroimage.2020.116873. Epub 2020 May 5.
8
Multimodal mapping of the face connectome.
Nat Hum Behav. 2020 Apr;4(4):397-411. doi: 10.1038/s41562-019-0811-3. Epub 2020 Jan 27.
9
Spatiotemporal dynamics of postoperative functional plasticity in patients with brain tumors in language areas.
Brain Lang. 2020 Mar;202:104741. doi: 10.1016/j.bandl.2019.104741. Epub 2020 Jan 10.
10
A Taxonomy of Brain-Behavior Relationships After Stroke.
J Speech Lang Hear Res. 2019 Nov 22;62(11):3907-3922. doi: 10.1044/2019_JSLHR-L-RSNP-19-0032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验