Craciun Gheorghe, Joshi Badal, Pantea Casian, Tan Ike
Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA.
Department of Mathematics, California State University San Marcos, San Marcos, CA, USA.
Bull Math Biol. 2022 May 11;84(6):65. doi: 10.1007/s11538-022-01021-7.
We consider a natural class of reaction networks which consist of reactions where either two species can inactivate each other (i.e., sequestration), or some species can be transformed into another (i.e., transmutation), in a way that gives rise to a feedback cycle. We completely characterize the capacity of multistationarity of these networks. This is especially interesting because such networks provide simple examples of "atoms of multistationarity", i.e., minimal networks that can give rise to multiple positive steady states.
我们考虑一类自然的反应网络,其由这样的反应组成:要么两个物种可以相互失活(即隔离),要么一些物种可以转化为另一种物种(即嬗变),且以产生反馈循环的方式进行。我们完全刻画了这些网络的多稳态容量。这尤其有趣,因为这样的网络提供了“多稳态原子”的简单示例,即可以产生多个正稳态的最小网络。