Chakraborty Soham, Chaudhuri Deep, Chaudhuri Dyuti, Singh Vihan, Banerjee Souradeep, Chowdhury Debojyoti, Haldar Shubhasis
Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
Nanoscale. 2022 May 26;14(20):7659-7673. doi: 10.1039/d1nr07582a.
The structure-function dynamics of a protein as a flexible polymer is essential to describe its biological functions. Here, using single-molecule magnetic tweezers, we have studied the effect of ionic strength on the folding mechanics of protein L, and probed its folding-associated physical properties by re-measuring the same protein in a range of ammonium sulfate concentrations from 150 mM to 650 mM. We observed an electrolyte-dependent conformational dynamics and folding landscape of the protein in a single experiment. Salt increases the refolding kinetics, while decreasing the unfolding kinetics under force, which in turn modifies the barrier heights towards the folded state. Additionally, salt enhances the molecular compaction by decreasing the Kuhn length of the protein polymer from 1.18 nm to 0.58 nm, which we have explained by modifying the freely jointed chain model. Finally, we correlated polymer chain physics to the folding dynamics, and thus provided an analytical framework for understanding compaction-induced folding mechanics across a range of ionic strengths from a single experiment.
蛋白质作为一种柔性聚合物的结构-功能动力学对于描述其生物学功能至关重要。在此,我们使用单分子磁镊研究了离子强度对蛋白质L折叠力学的影响,并通过在150 mM至650 mM的一系列硫酸铵浓度下重新测量同一蛋白质,探究了其与折叠相关的物理性质。我们在单个实验中观察到了该蛋白质依赖于电解质的构象动力学和折叠态势。盐增加了重折叠动力学,同时降低了受力下的解折叠动力学,这反过来又改变了朝向折叠态的势垒高度。此外,盐通过将蛋白质聚合物的库恩长度从1.18 nm减小到0.58 nm来增强分子压缩,我们通过修改自由连接链模型对此进行了解释。最后,我们将聚合物链物理学与折叠动力学相关联,从而提供了一个分析框架,用于从单个实验理解在一系列离子强度下压缩诱导的折叠力学。