BiP/ERdj3 的力调节伴侣活性与它们的同源物 DnaK/DnaJ 相反。
Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ.
机构信息
Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India.
Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India.
出版信息
Protein Sci. 2024 Jul;33(7):e5068. doi: 10.1002/pro.5068.
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
多肽链在穿过细胞隧道时会经历机械张力,随后由分子伴侣进行折叠。然而,在力的作用下,隧道相关伴侣与这些新出现的多肽之间的相互作用还不完全清楚。我们的研究集中在两种隧道相关伴侣,即 BiP 和 ERdj3 的机械伴侣活性上,分别在有和没有机械限制的情况下,并将它们与其细胞质同源物 DnaK 和 DnaJ 进行比较。虽然已经观察到 BiP/ERdj3 在力的作用下表现出强大的折叠酶活性,但 DnaK/DnaJ 表现出持留酶功能。重要的是,在没有力的情况下,隧道相关伴侣(BiP/ERdj3)转变为持留酶状态,这表明存在力依赖性伴侣行为。这种在隧道中由伴侣驱动的折叠事件产生了高达 54 zJ 的额外机械能,可能有助于蛋白质转运。我们的发现与应变理论一致,即具有更高内在可变形性的伴侣作为机械折叠酶(BiP、ERdj3),而那些具有较低可变形性的伴侣作为持留酶(DnaK 和 DnaJ)。因此,本研究阐明了差异调节的伴侣活性,并为共转运蛋白折叠提供了新的视角。
相似文献
Nat Commun. 2015-2-17
J Cell Sci. 2013-2-1
引用本文的文献
本文引用的文献
Cell Rep. 2022-11-29
Biomacromolecules. 2022-7-11
Proc Natl Acad Sci U S A. 2022-4-12
Chem Sci. 2021-7-19
Front Mol Biosci. 2021-7-28
J Chem Theory Comput. 2020-11-10
Nat Commun. 2020-7-30