Suppr超能文献

来自单个CsPbBr钙钛矿量子点的超窄室温发射。

Ultra-narrow room-temperature emission from single CsPbBr perovskite quantum dots.

作者信息

Rainò Gabriele, Yazdani Nuri, Boehme Simon C, Kober-Czerny Manuel, Zhu Chenglian, Krieg Franziska, Rossell Marta D, Erni Rolf, Wood Vanessa, Infante Ivan, Kovalenko Maksym V

机构信息

Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland.

Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland.

出版信息

Nat Commun. 2022 May 11;13(1):2587. doi: 10.1038/s41467-022-30016-0.

Abstract

Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs. initial values of 70-120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20-60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.

摘要

长期以来,半导体量子点一直被视为人工原子,尽管在强能级量子化和单光子发射能力方面存在总体类比,但它们的发射光谱远比典型的原子发射线宽得多。在这里,我们通过使用从头算分子动力学来模拟结构动态的CsPbBr量子点中的激子-表面-声子相互作用,随后进行单量子点光谱学研究,证明这些量子点中的发射线展宽主要由激子与低能表面声子的耦合所控制。对表面化学成分进行适度调整,可以实现小得多的发射线宽,即35-65 meV(初始值为70-120 meV),这与结构刚性的胶体II-VI量子点的最佳已知值(20-60 meV)相当。室温下的超窄发射对于传统发光器件来说是理想的,对于新兴的量子光源来说则至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e9f/9095639/7d3e0252abed/41467_2022_30016_Fig1_HTML.jpg

相似文献

1
Ultra-narrow room-temperature emission from single CsPbBr perovskite quantum dots.
Nat Commun. 2022 May 11;13(1):2587. doi: 10.1038/s41467-022-30016-0.
3
Many-Body Correlations and Exciton Complexes in CsPbBr Quantum Dots.
Adv Mater. 2023 Mar;35(9):e2208354. doi: 10.1002/adma.202208354. Epub 2023 Jan 18.
4
Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
Acc Chem Res. 2009 Dec 21;42(12):2005-16. doi: 10.1021/ar900157s.
5
Low temperature photoluminescence properties of CsPbBr quantum dots embedded in glasses.
Phys Chem Chem Phys. 2017 Jul 14;19(26):17349-17355. doi: 10.1039/c7cp02482g. Epub 2017 Jun 26.
7
Biexciton Binding Energy and Line width of Single Quantum Dots at Room Temperature.
Nano Lett. 2021 Jul 14;21(13):5760-5766. doi: 10.1021/acs.nanolett.1c01556. Epub 2021 Jun 16.
8
Temperature-Dependent Photoluminescence of CHNHPbBr Perovskite Quantum Dots and Bulk Counterparts.
J Phys Chem Lett. 2018 Jul 19;9(14):4066-4074. doi: 10.1021/acs.jpclett.8b01593. Epub 2018 Jul 9.
10
Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
Nano Lett. 2016 Apr 13;16(4):2349-62. doi: 10.1021/acs.nanolett.5b05077. Epub 2016 Mar 1.

引用本文的文献

1
Tunable Angular Light Emission of Lead Halide Perovskite Nanocrystal Thin Films via Solution-Processed Substrate Treatment.
ACS Nanosci Au. 2025 Jun 14;5(4):276-283. doi: 10.1021/acsnanoscienceau.5c00054. eCollection 2025 Aug 20.
2
Non-monotonic size-dependent exciton radiative lifetime in CsPbBr nanocrystals.
Nat Commun. 2025 Jul 11;16(1):6401. doi: 10.1038/s41467-025-60848-5.
3
Suppressing electron-phonon coupling for narrow-band emitting Eu(II)-based perovskitoids.
Nat Commun. 2025 Jul 1;16(1):5641. doi: 10.1038/s41467-025-60852-9.
4
Room-temperature cavity exciton-polariton condensation in perovskite quantum dots.
Nat Commun. 2025 Jun 5;16(1):5228. doi: 10.1038/s41467-025-60553-3.
5
Efficient Thermally Evaporated Near-Infrared Perovskite Light-Emitting Diodes via Phase Regulation.
Nanomicro Lett. 2025 May 22;17(1):270. doi: 10.1007/s40820-025-01776-3.
6
Highly Emissive Colloidal Nanocrystals of a "2.5-Dimensional" Monomethylhydrazinium Lead Bromide.
J Am Chem Soc. 2025 Feb 26;147(8):6795-6804. doi: 10.1021/jacs.4c16698. Epub 2025 Feb 12.
7
Phonon Involved Photoluminescence of Mn Ions Doped CsPbCl Micro-Size Perovskite Assembled Crystals.
Adv Sci (Weinh). 2025 Mar;12(11):e2413402. doi: 10.1002/advs.202413402. Epub 2025 Jan 22.
8
Towards non-blinking and photostable perovskite quantum dots.
Nat Commun. 2025 Jan 2;16(1):204. doi: 10.1038/s41467-024-55619-7.
9
Extreme Electron-Photon Interaction in Disordered Perovskites.
Adv Sci (Weinh). 2025 Feb;12(5):e2405709. doi: 10.1002/advs.202405709. Epub 2024 Oct 2.
10
Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission.
Nano Lett. 2024 Oct 2;24(39):12045-12053. doi: 10.1021/acs.nanolett.4c01565. Epub 2024 Sep 23.

本文引用的文献

1
Interplay of Surface and Interior Modes in Exciton-Phonon Coupling at the Nanoscale.
Nano Lett. 2021 Oct 27;21(20):8741-8748. doi: 10.1021/acs.nanolett.1c02953. Epub 2021 Oct 5.
2
Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr quantum dots.
Nanoscale. 2020 Jun 28;12(24):13113-13118. doi: 10.1039/d0nr02711a. Epub 2020 Jun 17.
3
Underestimated Effect of a Polymer Matrix on the Light Emission of Single CsPbBr Nanocrystals.
Nano Lett. 2019 Jun 12;19(6):3648-3653. doi: 10.1021/acs.nanolett.9b00689. Epub 2019 May 28.
4
Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield.
Science. 2019 Mar 15;363(6432):1199-1202. doi: 10.1126/science.aat3803.
5
Coherent single-photon emission from colloidal lead halide perovskite quantum dots.
Science. 2019 Mar 8;363(6431):1068-1072. doi: 10.1126/science.aau7392. Epub 2019 Feb 21.
6
Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties.
Chem Rev. 2019 Mar 13;119(5):3296-3348. doi: 10.1021/acs.chemrev.8b00644. Epub 2019 Feb 13.
7
Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals.
ACS Energy Lett. 2019 Jan 11;4(1):63-74. doi: 10.1021/acsenergylett.8b01669. Epub 2018 Nov 27.
9
Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBrCl Perovskite Nanocrystals.
Nano Lett. 2018 Dec 12;18(12):7546-7551. doi: 10.1021/acs.nanolett.8b03027. Epub 2018 Nov 14.
10
Superfluorescence from lead halide perovskite quantum dot superlattices.
Nature. 2018 Nov;563(7733):671-675. doi: 10.1038/s41586-018-0683-0. Epub 2018 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验