Suppr超能文献

室温下钙钛矿量子点中的腔激子-极化激元凝聚

Room-temperature cavity exciton-polariton condensation in perovskite quantum dots.

作者信息

Georgakilas Ioannis, Tiede David, Urbonas Darius, Mirek Rafał, Bujalance Clara, Caliò Laura, Oddi Virginia, Tao Rui, Dirin Dmitry N, Rainò Gabriele, Boehme Simon C, Galisteo-López Juan F, Mahrt Rainer F, Kovalenko Maksym V, Miguez Hernán, Stöferle Thilo

机构信息

IBM Research Europe - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.

Institute of Quantum Electronics, Department of Physics, ETH Zürich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.

出版信息

Nat Commun. 2025 Jun 5;16(1):5228. doi: 10.1038/s41467-025-60553-3.

Abstract

The exploitation of the strong light-matter coupling regime and exciton-polariton condensates has emerged as a compelling approach to introduce strong interactions and nonlinearities into numerous photonic applications. The use of colloidal semiconductor quantum dots with strong three-dimensional confinement as the active material in optical microcavities would be highly advantageous due to their versatile structural and compositional tunability and wet-chemical processability, as well as potentially enhanced, confinement-induced polaritonic interactions. Yet, to date, exciton-polariton condensation in a microcavity has neither been achieved with epitaxial nor with colloidal quantum dots. Here, we demonstrate room-temperature polariton condensation in a thin film of monodisperse, colloidal CsPbBr quantum dots, placed in a tunable optical resonator with a Gaussian-shaped deformation serving as wavelength-scale potential well for polaritons. The onset of polariton condensation under pulsed optical excitation is manifested in emission by its characteristic superlinear intensity dependence, reduced linewidth, blueshift, and extended temporal coherence.

摘要

利用强光与物质耦合机制和激子极化激元凝聚,已成为一种引人注目的方法,可将强相互作用和非线性引入众多光子应用中。使用具有强三维限制的胶体半导体量子点作为光学微腔中的活性材料将非常有利,这是由于其具有多样的结构和成分可调性以及湿化学可加工性,还有可能增强的、由限制诱导的极化激元相互作用。然而,迄今为止,无论是外延量子点还是胶体量子点,都尚未在微腔中实现激子极化激元凝聚。在此,我们展示了在单分散胶体CsPbBr量子点薄膜中的室温极化激元凝聚,该薄膜置于一个可调谐光学谐振器中,该谐振器具有高斯形状的形变,作为极化激元的波长尺度势阱。在脉冲光激发下极化激元凝聚的起始表现为发射光具有特征性的超线性强度依赖性、减小的线宽、蓝移和延长的时间相干性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61db/12141476/405100e15666/41467_2025_60553_Fig1_HTML.jpg

相似文献

1
Room-temperature cavity exciton-polariton condensation in perovskite quantum dots.
Nat Commun. 2025 Jun 5;16(1):5228. doi: 10.1038/s41467-025-60553-3.
2
Room-temperature continuous-wave pumped exciton polariton condensation in a perovskite microcavity.
Sci Adv. 2025 Jan 31;11(5):eadr1652. doi: 10.1126/sciadv.adr1652. Epub 2025 Jan 29.
3
Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity.
Nano Lett. 2024 Apr 15;24(16):4959-64. doi: 10.1021/acs.nanolett.4c00634.
6
Electrical polarization switching of perovskite polariton laser.
Nanophotonics. 2024 Feb 19;13(14):2659-2668. doi: 10.1515/nanoph-2023-0829. eCollection 2024 Jun.
7
Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing.
Nat Mater. 2024 Nov;23(11):1515-1522. doi: 10.1038/s41563-024-01980-3. Epub 2024 Aug 19.
8
Room-temperature exciton-polaritons with two-dimensional WS2.
Sci Rep. 2016 Sep 19;6:33134. doi: 10.1038/srep33134.
9
A GaAs polariton light-emitting diode operating near room temperature.
Nature. 2008 May 15;453(7193):372-5. doi: 10.1038/nature06979.
10
Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
ACS Nano. 2018 Aug 28;12(8):8382-8389. doi: 10.1021/acsnano.8b03737. Epub 2018 Aug 13.

本文引用的文献

1
Extracting accurate light-matter couplings from disordered polaritons.
Nanophotonics. 2024 Apr 15;13(14):2469-2478. doi: 10.1515/nanoph-2024-0049. eCollection 2024 Jun.
2
Topological valley Hall polariton condensation.
Nat Nanotechnol. 2024 Sep;19(9):1283-1289. doi: 10.1038/s41565-024-01674-6. Epub 2024 May 24.
3
Strong Light-Matter Coupling in Lead Halide Perovskite Quantum Dot Solids.
ACS Nano. 2024 Feb 13;18(6):4922-4931. doi: 10.1021/acsnano.3c10358. Epub 2024 Feb 1.
4
Single-photon superradiance in individual caesium lead halide quantum dots.
Nature. 2024 Feb;626(7999):535-541. doi: 10.1038/s41586-023-07001-8. Epub 2024 Jan 31.
5
Observation of transition from superfluorescence to polariton condensation in CsPbBr quantum dots film.
Light Sci Appl. 2024 Jan 30;13(1):34. doi: 10.1038/s41377-024-01378-5.
6
Perovskite quantum dot one-dimensional topological laser.
Nat Commun. 2023 Mar 15;14(1):1433. doi: 10.1038/s41467-023-36963-6.
7
Strongly Confined CsPbBr Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices.
ACS Nano. 2023 Feb 14;17(3):2089-2100. doi: 10.1021/acsnano.2c07677. Epub 2023 Jan 31.
9
Many-Body Correlations and Exciton Complexes in CsPbBr Quantum Dots.
Adv Mater. 2023 Mar;35(9):e2208354. doi: 10.1002/adma.202208354. Epub 2023 Jan 18.
10
Room-temperature polariton quantum fluids in halide perovskites.
Nat Commun. 2022 Nov 30;13(1):7388. doi: 10.1038/s41467-022-34987-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验