Suppr超能文献

临床和表观遗传生物标志物与死亡率的综合分析。

Integrative analysis of clinical and epigenetic biomarkers of mortality.

机构信息

The Framingham Heart Study, Framingham, Massachusetts, USA.

The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Aging Cell. 2022 Jun;21(6):e13608. doi: 10.1111/acel.13608. Epub 2022 May 12.

Abstract

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P  = 4.1 × 10 ) and negatively associated with longevity (Beta = -1.9, P  = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.

摘要

DNA 甲基化(DNAm)与许多疾病和死亡率有关。我们假设将 DNAm 与临床危险因素相结合可以提高死亡率预测的准确性。我们对 15 个队列的全血 DNAm 与死亡率的关系进行了全基因组关联研究(n=15013)。在平均 10 年的随访期间,共有 4314 人死于各种原因,包括 1235 例心血管疾病(CVD)死亡和 868 例癌症死亡。对所有原因死亡率的遗传分层荟萃分析确定了 163 个在欧洲血统(EA)和 17 个在非洲血统(AA)参与者中与 p<1×10-8 相关的 CpG,其中 41 个(EA)和 16 个(AA)也与 CVD 死亡相关,而 15 个(EA)和 9 个(AA)与癌症死亡相关。我们构建了基于 DNAm 的全因死亡率预测模型,该模型在调整临床危险因素后预测死亡率风险。与仅包含临床危险因素的模型相比,将 DNAm 与临床危险因素相结合构建的死亡率预测模型在预测癌症死亡方面表现出了更好的预测能力,在验证队列中 C 指数提高了 5%。孟德尔随机化确定了 15 个与长寿、CVD 或癌症风险相关的推测性因果 CpG。例如,cg06885782(位于 KCNQ4 中)与前列腺癌风险呈正相关(Beta=1.2,P=4.1×10-8),与长寿呈负相关(Beta=-1.9,P=0.02)。通路分析显示,与死亡率相关的 CpG 相关的基因富集了与免疫和癌症相关的通路。我们确定了可复制的死亡率相关 DNAm 特征,并证明了 CpG 作为预测死亡率风险的信息生物标志物的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ae/9197414/f77368f07a88/ACEL-21-e13608-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验