Nadeem M, Cruddas Jace, Ruzzi Gian, Powell Benjamin J
School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia.
School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
J Am Chem Soc. 2022 May 25;144(20):9138-9148. doi: 10.1021/jacs.2c03202. Epub 2022 May 12.
Spin-crossover (SCO) materials display many fascinating behaviors including collective phase transitions and spin-state switching controlled by external stimuli, e.g., light and electrical currents. As single-molecule switches, they have been fêted for numerous practical applications, but these remain largely unrealized-partly because of the difficulty of switching these materials at high temperatures. We introduce a semiempirical microscopic model of SCO materials combining crystal field theory with elastic intermolecular interactions. For realistic parameters, this model reproduces the key experimental results including thermally induced phase transitions, light-induced spin-state trapping (LIESST), and reverse-LIESST. Notably, we reproduce and explain the experimentally observed relationship between the critical temperature of the thermal transition, , and the highest temperature for which the trapped state is stable, , and explain why increasing the stiffness of the coordination sphere increases . We propose strategies to design SCO materials with higher : optimizing the spin-orbit coupling via heavier atoms (particularly in the inner coordination sphere) and minimizing the enthalpy difference between the high-spin (HS) and low-spin (LS) states. However, the most dramatic increases arise from increasing the cooperativity of the spin-state transition by increasing the rigidity of the crystal. Increased crystal rigidity can also stabilize the HS state to low temperatures on thermal cycling yet leave the LS state stable at high temperatures following, for example, reverse-LIESST. We show that such highly cooperative systems offer a realistic route to robust room-temperature switching, demonstrate this , and discuss material design rationale to realize this.
自旋交叉(SCO)材料展现出许多迷人的行为,包括集体相变以及由外部刺激(如光和电流)控制的自旋态切换。作为单分子开关,它们因众多实际应用而备受赞誉,但这些应用在很大程度上仍未实现,部分原因是在高温下切换这些材料存在困难。我们引入了一种将晶体场理论与弹性分子间相互作用相结合的SCO材料半经验微观模型。对于实际参数,该模型再现了关键实验结果,包括热诱导相变、光诱导自旋态俘获(LIESST)和反向LIESST。值得注意的是,我们再现并解释了热转变临界温度(T_c)与俘获态稳定的最高温度(T_{max})之间实验观察到的关系,并解释了为何增加配位球的刚度会提高(T_c)。我们提出了设计具有更高(T_c)的SCO材料的策略:通过较重的原子(特别是在内层配位球中)优化自旋 - 轨道耦合,并最小化高自旋(HS)和低自旋(LS)态之间的焓差。然而,最显著的提高来自于通过增加晶体的刚性来增强自旋态转变的协同性。增加晶体刚性还可以在热循环中将HS态稳定到低温,但在例如反向LIESST之后,使LS态在高温下保持稳定。我们表明,这种高度协同的系统为实现稳健的室温切换提供了一条现实途径,展示了这一点,并讨论了实现这一目标的材料设计原理。