Suppr超能文献

聚合物膜中厚度和温度依赖的物理老化对O/N气体分离影响的数学建模。

Mathematical modelling of thickness and temperature dependent physical aging to O/N gas separation in polymeric membranes.

作者信息

Lock S S M, Lau K K, Shariff A M, Yeong Y F, Ahmad Faizan

机构信息

CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar Malaysia

School of Science, Engineering and Design, Teesside University Middlesbrough UK.

出版信息

RSC Adv. 2018 Aug 28;8(53):30265-30279. doi: 10.1039/c8ra05323e. eCollection 2018 Aug 24.

Abstract

Polymeric membranes are glassy materials at non-equilibrium state and inherently undergo a spontaneous evolution towards equilibrium known as physical aging. Volume relaxation characteristic during the course of aging is governed by the surrounding temperature in which the polymeric material is aged. Although there are studies to understand how polymeric materials evolve over time towards equilibrium at different operating temperatures, the theories have been developed merely in response to experimental observations and phenomenological theory at bulk glassy state without the implementation of sample size effects. Limited work has been done to characterize the physical aging process to thin polymeric films using reasonable physical parameters and mathematical models with incorporation of thermodynamics and film thickness consideration. The current work applies the Tait equation of states and thickness dependent glass transition temperature, integrated within a simple linear correlation, to model the temperature and thickness dependent physical aging. The mathematical model has been validated with experimental aging data, whereby a small deviation is observed that has been explained by intuitive reasoning pertaining to the thermodynamic parameters. The mathematical model has been further employed to study the gas transport properties of O and N, which is anticipated to be applied in oxygen enriched combustion for generation of cleaner and higher efficiency fuel in future work.

摘要

聚合物膜处于非平衡态时是玻璃态材料,会自发地向平衡态演化,这一过程称为物理老化。老化过程中的体积松弛特性取决于聚合物材料老化时的环境温度。尽管有研究试图理解聚合物材料在不同操作温度下如何随时间向平衡态演化,但相关理论仅仅是针对块状玻璃态的实验观察和唯象理论发展而来,并未考虑样品尺寸效应。利用合理的物理参数和纳入热力学及膜厚度考量的数学模型来表征聚合物薄膜的物理老化过程的工作还很有限。当前的工作应用泰特状态方程和与厚度相关的玻璃化转变温度,并将其整合到一个简单的线性关联中,以模拟与温度和厚度相关的物理老化。该数学模型已通过实验老化数据进行验证,观察到存在一个小偏差,这可通过与热力学参数相关的直观推理来解释。该数学模型还被进一步用于研究氧气和氮气的气体传输特性,预计在未来的工作中可应用于富氧燃烧,以生产更清洁、效率更高的燃料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6250/9085435/f438d05cf19c/c8ra05323e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验