Wang Song, Wang Lijuan, Meng Zhaohui, Luo Baomin
School of Chemistry and Material Science, Liaoning Shihua University Fushun 113001 Liaoning China
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University Nanyang 473061 Henan China.
RSC Adv. 2018 Sep 10;8(55):31628-31632. doi: 10.1039/c8ra05893h. eCollection 2018 Sep 5.
An LiZnTiO/graphene (LZTO/G) anode is successfully synthesized by a two-step reaction. The results show that LZTO particles can be well dispersed into the graphene conductive network. The conductive structure greatly improves the electrochemical performance of LZTO/G. When cycled for 400 cycles, 76.4% of the capacity for the 2nd cycle is maintained at 1 A g. Also, 174.8 and 156.5 mA h g are still delivered at the 100th cycle for 5 and 6 A g, respectively. The excellent cyclic performance and the large specific capacities at high current densities are due to the good conductive network of the LZTO active particles, large pore volume, small particle size, low charge-transfer resistance and high lithium diffusion coefficient.
通过两步反应成功合成了锂锌钛氧化物/石墨烯(LZTO/G)负极。结果表明,LZTO颗粒能够很好地分散在石墨烯导电网络中。这种导电结构极大地提高了LZTO/G的电化学性能。当以1 A g的电流密度循环400次时,第二循环容量的76.4%得以保持。此外,在第100次循环时,5 A g和6 A g的电流密度下仍分别有174.8和156.5 mA h g的比容量。优异的循环性能以及在高电流密度下的大比容量归因于LZTO活性颗粒良好的导电网络、大孔体积、小粒径、低电荷转移电阻和高锂扩散系数。