Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2010 Oct 13;132(40):13978-80. doi: 10.1021/ja105296a.
We developed two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn(3)O(4) nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn(3)O(4) nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn(3)O(4) nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn(3)O(4) nanoparticles grown atop. The Mn(3)O(4)/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
我们开发了两步溶液相反应,在还原氧化石墨烯 (RGO) 片上形成 Mn(3)O(4)纳米粒子的混合材料,用于锂离子电池应用。与溶液中自由粒子生长相比,Mn(3)O(4)纳米粒子在 RGO 片上的选择性生长允许电绝缘的 Mn(3)O(4)纳米粒子通过下面的导电石墨烯网络连接到集电器。在 RGO 上形成的 Mn(3)O(4)纳米粒子具有高达约 900 mAh/g 的高比容量,接近其理论容量,具有良好的倍率性能和循环稳定性,这归因于石墨烯基底和生长在其顶部的 Mn(3)O(4)纳米粒子之间的紧密相互作用。Mn(3)O(4)/RGO 混合材料可能是一种很有前途的高容量、低成本、环保型锂离子电池负极材料。我们的基于石墨烯的生长方法应为基于高绝缘材料的电池电极的设计和合成提供一种新技术。