Suppr超能文献

用于检测硝基芳香族爆炸化合物的基于四苯乙烯的共轭微孔聚合物的合成。

Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds.

作者信息

Namgung Ho, Lee Jeong Jun, Gwon Young Jin, Lee Taek Seung

机构信息

Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea

出版信息

RSC Adv. 2018 Oct 5;8(60):34291-34296. doi: 10.1039/c8ra06463f. eCollection 2018 Oct 4.

Abstract

Conjugated microporous polymers (CMPs) containing tetraphenylethylene (TPE) were synthesized the Suzuki coupling polymerization. The tetrafunctional TPE moiety in the polymer backbone was linked with the difunctional phenylene group to exhibit a porous structure with high fluorescence in the solid state because of aggregation-induced emissive TPE. The porous polymer with a fluorescent TPE group successfully detected nitroaromatic explosive compounds that exhibited fluorescence quenching, in which the polymer shows high quenching efficiency to picric acid among nitroaromatic explosive compounds. The interaction between the electron-rich TPE group and the electron-deficient nitroaromatic compounds played a decisive role in fluorescence quenching a photoinduced electron transfer (PET). Compared with a linear polymer containing TPE, the porous, crosslinked polymer showed better sensing performance toward nitroaromatic compounds, presumably because of the more efficient interaction between TPE and nitroaromatic compounds in the pores of TPE-based CMP (TPE-CMP).

摘要

通过铃木偶联聚合反应合成了含有四苯乙烯(TPE)的共轭微孔聚合物(CMP)。聚合物主链中的四官能团TPE部分与双官能团亚苯基相连,由于聚集诱导发光的TPE,呈现出固态下具有高荧光的多孔结构。具有荧光TPE基团的多孔聚合物成功检测到呈现荧光猝灭的硝基芳香族爆炸化合物,其中该聚合物对硝基芳香族爆炸化合物中的苦味酸表现出高猝灭效率。富电子的TPE基团与缺电子的硝基芳香族化合物之间的相互作用在通过光致电子转移(PET)实现的荧光猝灭中起决定性作用。与含有TPE的线性聚合物相比,多孔交联聚合物对硝基芳香族化合物表现出更好的传感性能,这可能是因为TPE与基于TPE的CMP(TPE-CMP)孔中的硝基芳香族化合物之间的相互作用更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5437/9086882/7ada081675cb/c8ra06463f-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验