The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.
Langmuir. 2022 May 24;38(20):6265-6272. doi: 10.1021/acs.langmuir.1c02923. Epub 2022 May 12.
Anisotropic self-assembly of nanoparticles (NPs) stems from the fine-tuning of their surface functionality and NP interaction. Strategies involving ligand interaction, protein interaction, and external stimulus have been developed. However, robust construction of monodispersed magnetic NPs to tens of microns of anisotropically aligned colloidal assembly triggered by adsorbed protein intermolecular interaction is yet to be elucidated. Here, we present the NP-protein interaction, magnetic force, and protein corona intermolecular interaction serially but independently induced path-dependent self-assembly of 100 nm FeO@SiO nanocomposites. Dynamic formation of the micron-sized anisotropic magnetic assembly was reproducibly realized in a continuous medium in a controllable manner. Formation of the primary globular clusters upon the unique NP-protein complexes with the help of ions acts as the prerequisite for the anisotropic colloidal assembly, followed by the magnetic force-driven pre-organization and protein intermolecular electrostatic interaction-mediated elongation. The protein concentration rather than the protein original structure plays a more pivotal role in the NP-protein interaction and subsequent colloidal assembly process. Two typical serum proteins fibrinogen and bovine serum albumin enable formation of the anisotropic colloidal assembly but with a different subtle morphology. Furthermore, the obtained micron-sized magnetic colloidal assembly can be dissociated rapidly by adding a negative electrolyte in the medium due to the interference in the NP-protein interaction. However, the self-assembly process can be recycled based on the dissociated colloidal assembly.
纳米颗粒(NPs)的各向异性自组装源于其表面功能和 NP 相互作用的精细调控。已经开发出涉及配体相互作用、蛋白质相互作用和外部刺激的策略。然而,通过吸附的蛋白质分子间相互作用引发的、具有规整形貌的、几十微米大小的单分散磁性 NPs 的胶体组装仍然难以实现。在这里,我们提出了 NP-蛋白质相互作用、磁力和蛋白质冠分子间相互作用的串联但独立的诱导路径依赖性自组装 100nmFeO@SiO 纳米复合材料。在连续介质中以可控的方式可重复地实现微米级各向异性磁性组装的动态形成。在离子的帮助下,通过独特的 NP-蛋白质复合物形成的初级球形团簇作为各向异性胶体组装的先决条件,随后是磁力驱动的预组织和蛋白质分子间静电相互作用介导的伸长。在 NP-蛋白质相互作用和随后的胶体组装过程中,蛋白质浓度而不是蛋白质原始结构起着更关键的作用。两种典型的血清蛋白纤维蛋白原和牛血清白蛋白能够形成各向异性胶体组装,但具有不同的细微形态。此外,由于 NP-蛋白质相互作用的干扰,在介质中添加负电解质可以快速解聚所获得的微米级磁性胶体组装。然而,基于解聚的胶体组装可以回收自组装过程。