Suppr超能文献

深度学习聚苯乙烯二元溶液相行为。

Deep Learning of Binary Solution Phase Behavior of Polystyrene.

机构信息

Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.

UES, Inc., Dayton, Ohio 45431, United States.

出版信息

ACS Macro Lett. 2021 Jun 15;10(6):749-754. doi: 10.1021/acsmacrolett.1c00117. Epub 2021 May 31.

Abstract

Predicting binary solution phase behavior of polymers has remained a challenge since the early theory of Flory-Huggins, hindering the processing, synthesis, and design of polymeric materials. Herein, we take a complementary data-driven approach by building a machine learning framework to make fast and accurate predictions of polymer solution cloud point temperatures. Using polystyrene, both upper and lower critical solution temperatures are predicted within experimental uncertainty (1-2 °C) with a deep neural network, Gaussian process regression (GPR) model, and a combination of polymer, solvent, and state features. The GPR model also enables intelligent exploration of solution phase space, where as little as 25 cloud points are required to make predictions within 2 °C for polystyrene of arbitrary molecular weight in cyclohexane. This study demonstrates the effectiveness of machine learning for the prediction of liquid-liquid equilibrium of polymer solutions and establishes a framework to incorporate other polymers and complex macromolecular architectures.

摘要

预测聚合物的二元溶液相行为一直是自 Flory-Huggins 早期理论以来的挑战,这阻碍了聚合物材料的加工、合成和设计。在此,我们通过构建机器学习框架采取了一种互补的数据驱动方法,以便快速准确地预测聚合物溶液浊点温度。使用聚苯乙烯,通过深度神经网络、高斯过程回归 (GPR) 模型以及聚合物、溶剂和状态特征的组合,我们可以在实验不确定性范围内(1-2°C)预测上下临界溶解温度。GPR 模型还能够智能地探索溶液相空间,只需 25 个浊点,就可以在环己烷中预测任意分子量聚苯乙烯的温度在 2°C 以内。本研究证明了机器学习在预测聚合物溶液液-液相平衡方面的有效性,并建立了一个可以纳入其他聚合物和复杂大分子结构的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验