Suppr超能文献

共聚物在超临界CO₂和有机溶剂中的溶解行为评估:神经网络预测与统计分析

Assessment of Solubility Behavior of a Copolymer in Supercritical CO and Organic Solvents: Neural Network Prediction and Statistical Analysis.

作者信息

Baskaran Divya, Behera Uma Sankar, Byun Hun-Soo

机构信息

Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea.

出版信息

ACS Omega. 2024 Sep 19;9(39):40941-40955. doi: 10.1021/acsomega.4c06212. eCollection 2024 Oct 1.

Abstract

In the industrial sector, understanding the behavior of block copolymers in supercritical solvents is crucial. While qualitative agreement with polymer solubility curves has been evaluated using complex theoretical models in many cases, quantitative predictions remain challenging. This study aimed to create a rapid and accurate artificial neural network (ANN) model to predict the lower critical solubility and upper critical solubility space of an atypical block copolymer, poly(styrene--octafluoropentyl methacrylate) (PSOM), in different supercritical solvent systems over a wide range of temperatures (51.75-182.05 °C) and high pressure (3.28-200.86 MPa). The experimental data set used in this study included one copolymer, five supercritical solvents, one cosolvent, and one initiator. It consisted of seven unique copolymer-solvent combinations (252 cloud point pressures) used to predict the model quantitatively and qualitatively. To predict the PSOM-solvent interactions, the study considered two different input systems: a six-variable system, a five-variable system, and one target output. Initially, we used a three-layer feed-forward neural network to select the best learning algorithm (Levenberg-Marquardt) from 14 different algorithms, considering one sample PSOM-solvent system. Then, the network topology was optimized by varying hidden neuron numbers from 2 to 80 for all seven PSOM-solvent combination systems. The predicted cloud point pressures were in excellent agreement with the experimental cloud point pressures, confirming the model's accuracy. It is clear from the results of a minimum mean square error (≤1.90 × 10) and maximum linear regression (≥0.99) during training, validation, and testing of all the data sets. Further, the ANN model accuracy was tested by statistical analysis, confirming the model's ability to accurately capture the miscibility regions of polymers, enabling efficient processing of various polymer materials. This data-driven approach facilitates the prediction of coexistence curves for other polymers and complex macromolecular systems.

摘要

在工业领域,了解嵌段共聚物在超临界溶剂中的行为至关重要。虽然在许多情况下已使用复杂的理论模型评估了与聚合物溶解度曲线的定性一致性,但定量预测仍然具有挑战性。本研究旨在创建一个快速准确的人工神经网络(ANN)模型,以预测一种非典型嵌段共聚物聚(苯乙烯 - 甲基丙烯酸八氟戊酯)(PSOM)在不同超临界溶剂体系中,在较宽温度范围(51.75 - 182.05°C)和高压(3.28 - 200.86 MPa)下的下临界溶解温度和上临界溶解温度范围。本研究中使用的实验数据集包括一种共聚物、五种超临界溶剂、一种助溶剂和一种引发剂。它由七种独特的共聚物 - 溶剂组合(252个浊点压力)组成,用于对模型进行定量和定性预测。为了预测PSOM与溶剂的相互作用,该研究考虑了两种不同的输入系统:一个六变量系统、一个五变量系统和一个目标输出。最初,我们使用三层前馈神经网络,从14种不同算法中选择最佳学习算法(Levenberg - Marquardt),考虑一个样本PSOM - 溶剂系统。然后,通过对所有七种PSOM - 溶剂组合系统将隐藏神经元数量从2变化到80来优化网络拓扑结构。预测的浊点压力与实验浊点压力高度吻合,证实了模型的准确性。从所有数据集的训练、验证和测试过程中的最小均方误差(≤1.90×10)和最大线性回归(≥0.99)结果可以明显看出。此外,通过统计分析测试了ANN模型的准确性,证实了该模型能够准确捕捉聚合物的混溶区域,从而实现对各种聚合物材料的高效加工。这种数据驱动的方法有助于预测其他聚合物和复杂大分子系统的共存曲线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f6/11447862/d754e961c3bf/ao4c06212_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验