Rajdev Priya, Dey Pradip, Ghosh Indranil, Khamrui Rajesh, Kar Joy, Jana Siddhartha Sankar, Ghosh Suhrit
ACS Macro Lett. 2021 Dec 21;10(12):1467-1473. doi: 10.1021/acsmacrolett.1c00588. Epub 2021 Nov 9.
Cellular uptake is an important event in drug delivery and other biomedical applications. Amphiphilic polymers produce aggregates of different size and shape depending on the intrinsic structural differences and the packing parameter. Although they have been explored for various biomedical applications with immense interest, the relationship between the shape of the aggregate and cellular uptake has been studied only in limited examples. This work reports two polymers (P1 and P2), both of which contain a hydrophobic supramolecular structure-directing unit (SSDU) at the chain-end of a fluorescence dye-labeled hydrophilic polymer. Depending on the difference in the structure of the single H-bonding functional group (hydrazide or amide) of the SSDU, P1 and P2 produce polymersomes (NS1) and spherical micelles (NS2), respectively. An aged solution of P2 produces cylindrical micelles (NS3). Confocal microscopy studies reveal that the uptake of these nanostructures in HeLa cells greatly depends on the shape of the aggregate. Spherical NS1 and NS2 show appreciable uptake at 1 or 4 h of incubation, whereas NS3 shows negligible uptake. Temperature-dependent cellular uptake studies reveal an energy-dependent endocytosis pathway. Kinetic studies show gradual increase in the cellular uptake with time, and at 24 h the relative uptake ratio (NS1:NS2:NS3) is 1.0:0.2:<0.1, implying the polymersome morphology (NS1) is most efficient for cellular uptake compared to the spherical or cylindrical micelles. The same trend was also noticed for MDA-MB 231 cells. Confocal microscopy studies further reveal cellular internalization and intracellular location of NS1, which showed maximum cellular uptake. As the intrinsic difference in the chemical structure of the two polymers is negligible, the observed difference can be explicitly assigned to their difference in shape.
细胞摄取是药物递送和其他生物医学应用中的一个重要事件。两亲性聚合物会根据其内在结构差异和堆积参数产生不同大小和形状的聚集体。尽管它们已被广泛研究用于各种生物医学应用,但仅在有限的实例中研究了聚集体形状与细胞摄取之间的关系。本工作报道了两种聚合物(P1和P2),它们在荧光染料标记的亲水性聚合物链端均含有一个疏水性超分子结构导向单元(SSDU)。根据SSDU的单个氢键官能团(酰肼或酰胺)结构的差异,P1和P2分别产生聚合物囊泡(NS1)和球形胶束(NS2)。P2的老化溶液会产生圆柱形胶束(NS3)。共聚焦显微镜研究表明,这些纳米结构在HeLa细胞中的摄取很大程度上取决于聚集体的形状。球形的NS1和NS2在孵育1小时或4小时时显示出明显的摄取,而NS3的摄取可忽略不计。温度依赖性细胞摄取研究揭示了一种能量依赖性的内吞途径。动力学研究表明细胞摄取随时间逐渐增加,在24小时时相对摄取率(NS1:NS2:NS3)为1.0:0.2:<0.1,这意味着与球形或圆柱形胶束相比,聚合物囊泡形态(NS1)对细胞摄取最有效。在MDA-MB 231细胞中也观察到了相同的趋势。共聚焦显微镜研究进一步揭示了NS1的细胞内化和细胞内定位,NS1显示出最大的细胞摄取。由于这两种聚合物的化学结构内在差异可忽略不计,观察到的差异可明确归因于它们形状的不同。