School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Acc Chem Res. 2021 Jun 1;54(11):2670-2682. doi: 10.1021/acs.accounts.1c00195. Epub 2021 May 20.
Bioinspired self-assembly has been explored with diverse synthetic scaffolds, among which amphiphiles are perhaps the most extensively studied systems. Classical surfactants or amphiphilic block copolymers, depending on the hydrophobic-hydrophilic balance, produce distinct nanostructures, which hold promise for applications ranging from biology to materials sciences. Nevertheless, their immiscibility-driven aggregation does not provide the opportunity to precisely regulate the internal order, morphology, or functional group display, which is highly desirable, especially in the context of biological applications.A new class of amphiphiles have emerged in the recent past in which the hydrophilic segment(s) is appended with a hydrophobic supramolecular-structure-directing-unit (SSDU), consisting of a π-conjugated chromophore and a H-bonding group. Self-recognition of the SSDU by attractive directional interactions governs the supramolecular assembly, which is fundamentally different than the repulsive solvent-immiscibility driven aggregation of traditional amphiphiles. Such SSDU-appended hydrophilic polymers exhibit entropy-driven highly stable self-assembly producing distinct nanostructures depending on the H-bonding functional group. For example, polymers with the hydrazide-functionalized SSDU attached form a polymersome, while in a sharp contrast, the same polymers when connected to an amide containing SSDU produce a cylindrical micelle via a spherical-micelle intermediate. This relationship holds true for a series of SSDU-attached hydrophilic polymers irrespective of the hydrophobic/hydrophilic balance or chemical structure, indicating that the supramolecular-assembly is primarily controlled by the specific molecular-recognition motif of the SSDU, instead of the packing parameter-based norms. Beyond synthetic polymers, SSDU-attached proteins also exhibit similar molecular-recognition driven self-assembly as well as coassembly with SSDU-attached polymers or hydrophilic wedges, producing multi-stimuli-responsive nanostructures in which the protein gains remarkable protection from thermal denaturation or enzymatic hydrolysis and exhibits redox-responsive enzymatic activity.Furthermore, SSDU-derived bola-shape π-amphiphiles have been recognized as a useful scaffold for the synthesis of unsymmetric polymersomes, rarely reported in the literature. The building block consists of a hydrophobic naphthalene-diimide (NDI) π-system attached to a hydrophilic functional group (ionic or nonionic) and a nonionic wedge on its two opposite arms. Extended H-bonding among the hydrazide groups, placed only on one side of the central chromophore by design, ensures stacking of the NDIs with parallel orientation and induces a preferred direction of curvature so that the H-bonded chain and consequently the functional groups attached to the same side remain at the inner-wall of the supramolecular polymersome. Automatically, the functional groups, located on the other side, are displayed at the outer surface. This design works for different amphiphiles, which by virtue of efficient and predictable functional group display, strongly influences the multivalent binding with different biological targets resulting in efficient enzyme inhibition, glycocluster effect, or antibacterial activity, depending on the nature of the functional group. By taking advantage of the electron accepting nature of the NDI, electron rich pyrene-containing amphiphiles can be costacked in alternating sequence, producing temperature and redox-responsive supramolecular polymers with NDI/pyrene stoichiometry-dependent morphology, lower critical solution temperature (LCST), functional group display, and antibacterial activity.
仿生自组装已经在各种合成支架中得到了探索,其中两亲分子可能是研究最广泛的系统。根据疏水-亲水平衡,经典表面活性剂或两亲性嵌段共聚物产生不同的纳米结构,这在从生物学到材料科学的应用中具有广阔的前景。然而,它们的不相容性驱动的聚集并不能提供精确调节内部秩序、形态或功能基团展示的机会,这是非常理想的,特别是在生物应用的背景下。在最近的过去,出现了一类新的两亲分子,其中亲水部分附加了一个疏水超分子结构导向单元(SSDU),由一个π共轭发色团和一个氢键基团组成。SSDU 通过有吸引力的定向相互作用进行自我识别,控制超分子组装,这与传统两亲分子的排斥溶剂不相容性驱动的聚集有根本的不同。这种 SSDU 附加的亲水聚合物表现出熵驱动的高度稳定的自组装,根据氢键官能团产生不同的纳米结构。例如,带有酰肼功能化 SSDU 附加的聚合物形成聚合物囊泡,而与之形成鲜明对比的是,当相同的聚合物连接到含有酰胺的 SSDU 时,通过球形胶束中间产物形成圆柱形胶束。这种关系适用于一系列 SSDU 附加的亲水聚合物,无论疏水/亲水平衡或化学结构如何,这表明超分子组装主要由 SSDU 的特定分子识别基序控制,而不是基于堆积参数的规范。除了合成聚合物之外,SSDU 附加的蛋白质也表现出类似的分子识别驱动的自组装以及与 SSDU 附加的聚合物或亲水楔形物的共组装,在其中蛋白质从热变性或酶水解中获得显著保护并表现出氧化还原响应的酶活性的多刺激响应的纳米结构。此外,SSDU 衍生的 bola 形状的 π-两亲分子已被认为是合成不对称聚合物囊泡的有用支架,这在文献中很少报道。构建块由疏水萘二酰亚胺(NDI)π系统附着在亲水官能团(离子或非离子)和其两个相反臂上的非离子楔形物组成。通过设计仅在中心发色团的一侧放置的酰肼基团之间的扩展氢键,确保 NDI 的堆叠具有平行取向,并诱导曲率的优选方向,使得氢键链和因此连接到同一侧的官能团留在超分子聚合物囊泡的内壁上。自动地,位于另一侧的官能团显示在外部表面。这种设计适用于不同的两亲分子,由于高效和可预测的官能团展示,强烈影响与不同生物靶标的多价结合,从而导致有效的酶抑制、糖簇效应或抗菌活性,具体取决于官能团的性质。通过利用 NDI 的电子接受性质,可以以交替顺序堆叠富含电子的含芘两亲分子,产生具有 NDI/芘化学计量比依赖性形态、更低临界溶液温度(LCST)、官能团展示和抗菌活性的温度和氧化还原响应的超分子聚合物。