Üngör Ökten, Ozvat Tyler M, Ni Zhen, Zadrozny Joseph M
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States.
J Am Chem Soc. 2022 May 25;144(20):9132-9137. doi: 10.1021/jacs.2c03115. Epub 2022 May 12.
Designing spins that exhibit long-lived coherence and strong temperature sensitivity is central to designing effective molecular thermometers and a fundamental challenge in the chemistry/quantum-information space. Herein, we provide a new pathway to both properties in the same molecule by designing a nuclear spin, which possesses a robust spin coherence, to mimic the strong temperature sensitivity of an electronic spin. This design strategy is demonstrated in the group of trinuclear Co(III) spin-crossover compounds (CpCo(OP(OR)))Co where Cp = cyclopentadienyl and R = Me (), Et (), -Pr (), and -Bu (). Nuclear magnetic resonance analyses of the Co nuclear spins reveal Co chemical-shift temperature sensitivity (Δδ/Δ) values that span from 101(1) ppm/°C in to 149(1) ppm/°C in and 150(2) ppm/°C in , where the latter two are record temperature sensitivities for any nuclear spin. Additionally, complexes and have values of 74 and 78 μs in solution at ambient temperatures surpassing those from electron-spin-based complexes, which typically display long coherence times only at extremely low temperatures. Our results suggest that spin-crossover phenomena can enable electron-spin-like temperature sensitivities in nuclear spins while retaining robust coherence times at room temperature.
设计出具有长寿命相干性和强温度敏感性的自旋是设计有效的分子温度计的核心,也是化学/量子信息领域的一项基本挑战。在此,我们通过设计一种具有稳健自旋相干性的核自旋,为同一分子中的这两种特性提供了一条新途径,使其能够模拟电子自旋的强温度敏感性。这种设计策略在三核Co(III)自旋交叉化合物(CpCo(OP(OR)))Co组中得到了验证,其中Cp = 环戊二烯基,R = 甲基()、乙基()、正丙基()和正丁基()。对Co核自旋的核磁共振分析表明,Co化学位移温度敏感性(Δδ/Δ)值范围从化合物中的101(1) ppm/°C到化合物中的149(1) ppm/°C以及化合物中的150(2) ppm/°C,其中后两者是任何核自旋的创纪录温度敏感性。此外,化合物和在环境温度下的溶液中的值分别为74和78 μs,超过了基于电子自旋的配合物,后者通常仅在极低温度下才显示出长的相干时间。我们的结果表明,自旋交叉现象能够使核自旋具有类似电子自旋的温度敏感性,同时在室温下保持稳健的相干时间。