Suppr超能文献

无机化学中的量子模拟

Quantum Mimicry With Inorganic Chemistry.

作者信息

Campanella Anthony J, Üngör Ökten, Zadrozny Joseph M

机构信息

Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA.

出版信息

Comments Mod Chem A Comments Inorg Chem. 2024;44(1):11-53. doi: 10.1080/02603594.2023.2173588. Epub 2023 Feb 13.

Abstract

Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.

摘要

量子物体,如原子、自旋和亚原子粒子,由于其独特的物理性质而具有重要特性,这些特性可用于许多不同的应用,从量子信息处理到磁共振成像。分子物种也表现出量子特性,并且与例如在四极阱中孤立的离子不同,这些特性从根本上可通过合成设计进行调节。在本评论中,我们将多项不同的科学研究成果汇聚到一个新兴领域,该领域致力于设计能够模拟被困原子或固体缺陷等物体量子特性的分子。模仿在无机化学中很常见,并且在世界各地研究团队的研究兴趣中占据重要地位。我们描述了一个利用无机化学设计分子以模拟其他量子物体量子特性(例如自旋叠加寿命或其共振频率)的新领域,即“量子模仿”。在本评论中,我们描述了其哲学设计策略以及应用这些策略所取得的近期令人兴奋的成果。

相似文献

1
Quantum Mimicry With Inorganic Chemistry.无机化学中的量子模拟
Comments Mod Chem A Comments Inorg Chem. 2024;44(1):11-53. doi: 10.1080/02603594.2023.2173588. Epub 2023 Feb 13.
4
Mesoscopic systems: classical irreversibility and quantum coherence.介观系统:经典不可逆性与量子相干性。
Philos Trans A Math Phys Eng Sci. 2012 Sep 28;370(1975):4487-516. doi: 10.1098/rsta.2012.0218.
5
Electrically controlled nuclear polarization of individual atoms.单个原子的电控核极化。
Nat Nanotechnol. 2018 Dec;13(12):1120-1125. doi: 10.1038/s41565-018-0296-7. Epub 2018 Nov 5.
6
Electron spins from a molecular perspective: an interview with Song Gao.
Natl Sci Rev. 2024 Sep 14;11(9):nwae327. doi: 10.1093/nsr/nwae327. eCollection 2024 Sep.
7
Controlling spin relaxation with a cavity.用腔来控制自旋弛豫。
Nature. 2016 Mar 3;531(7592):74-7. doi: 10.1038/nature16944. Epub 2016 Feb 15.
9
Chemistry of Quantum Spin Liquids.量子自旋液体的化学
Chem Rev. 2021 Mar 10;121(5):2898-2934. doi: 10.1021/acs.chemrev.0c00641. Epub 2020 Nov 6.

本文引用的文献

1
Exploiting chemistry and molecular systems for quantum information science.利用化学和分子系统实现量子信息科学
Nat Rev Chem. 2020 Sep;4(9):490-504. doi: 10.1038/s41570-020-0200-5. Epub 2020 Jul 7.
7
Ultra-narrow optical linewidths in rare-earth molecular crystals.稀土分子晶体中的超窄光学线宽
Nature. 2022 Mar;603(7900):241-246. doi: 10.1038/s41586-021-04316-2. Epub 2022 Mar 9.
10
Tunable Cr Molecular Color Centers.可调谐 Cr 分子色心。
J Am Chem Soc. 2021 Dec 22;143(50):21350-21363. doi: 10.1021/jacs.1c10145. Epub 2021 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验