School of Science, Xihua University, Chengdu 610039, P. R. China.
Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Langmuir. 2022 May 24;38(20):6454-6463. doi: 10.1021/acs.langmuir.2c00663. Epub 2022 May 12.
Plasmonic sensors are promising for ultrasensitive chemical and biological analysis. Gold nanoplates (Au NPLs) show unique geometrical structures with high ratios of surface to bulk atoms, which display fascinating plasmonic properties but require optimization. This study presented a systematic investigation of the influence of different parameters (shape, aspect ratio, and resonance mode) on localized surface plasmon resonance properties, refractive index (RI, ) sensitivities, and surface-enhanced Raman scattering (SERS) enhancement ability of different types of Au NPLs through finite-difference time-domain (FDTD) simulations. As a proof of concept, triangular, circular, and hexagonal Au NPLs with varying aspect ratios were fabricated via a three-step seed-mediated growth method by the experiment. Both FDTD-simulated and measured experimental results confirm that the RI sensitivities increase with the aspect ratio. Furthermore, choosing a lower order resonance mode of Au NPLs benefits higher RI sensitivities. The SERS enhancement abilities of Au NPLs also predicted to be highly dependent on the shape and aspect ratio. The triangular Au NPLs showed the highest SERS enhancement ability, while it drastically decreased for circular Au NPLs after the rounding process. The SERS enhancement ability gradually became more intense as the hexagonal Au NPLs overgrown on circular Au NPLs with increasing volumes of HAuCl solution. The results are expected to help develop effective biosensors.
等离子体激元传感器在超灵敏化学和生物分析方面具有广阔的应用前景。金纳米板(Au NPLs)具有独特的几何结构,其表面与体原子的比例很高,显示出迷人的等离子体特性,但需要进行优化。本研究通过有限差分时域(FDTD)模拟系统地研究了不同参数(形状、纵横比和共振模式)对局部表面等离子体共振特性、折射率(RI,)灵敏度和不同类型 Au NPLs 的表面增强拉曼散射(SERS)增强能力的影响。作为概念验证,通过实验采用三步种子介导生长法制备了具有不同纵横比的三角形、圆形和六边形 Au NPLs。FDTD 模拟和测量实验结果均证实,RI 灵敏度随纵横比的增加而增加。此外,选择较低阶的 Au NPLs 共振模式有利于获得更高的 RI 灵敏度。Au NPLs 的 SERS 增强能力也被预测高度依赖于形状和纵横比。三角形 Au NPLs 表现出最高的 SERS 增强能力,而在圆形 Au NPLs 经过圆形化处理后,其 SERS 增强能力急剧下降。随着 HAuCl 溶液体积的增加,六边形 Au NPLs 在圆形 Au NPLs 上的覆盖程度增加,SERS 增强能力逐渐增强。研究结果有望为开发有效的生物传感器提供帮助。