Suppr超能文献

结构建模提示高尔基体带的颗粒状组织。

Structure modeling hints at a granular organization of the Golgi ribbon.

机构信息

Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK.

MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

BMC Biol. 2022 May 13;20(1):111. doi: 10.1186/s12915-022-01305-3.

Abstract

BACKGROUND

In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this "ribbon" architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses" whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis.

RESULTS

WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a "breathing" arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions.

CONCLUSIONS

Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.

摘要

背景

在脊椎动物细胞中,高尔基体功能亚基,即迷你堆栈,连接成三维网络。这种“带状”结构与高尔基体功能的关系尚不清楚。迷你堆栈之间的所有连接是否平等?带状结构的局部结构是否具有功能重要性?如果没有对嵌入带状迷你堆栈的输出进行可量化的读数,这些都是难以回答的问题。内皮细胞产生分泌颗粒,即 Weibel-Palade 体(WPB),其 von Willebrand 因子(VWF)货物是止血的核心。高尔基体在迷你堆栈和带状结构水平上控制 WPB 的大小。迷你堆栈的尺寸限制了 VWF“团块”的大小,而带状结构允许它们的线性共包装,从而产生不同长度的 WPB。这种高尔基体/WPB 大小关系适合数学分析。

结果

WPB 的长度被量化为团块大小的倍数,数学模型模拟了不同高尔基体带状结构对 WPB 大小的影响,以便与实验数据的实际情况进行比较。一个初始的简单模型,将高尔基体视为由线性连接的迷你堆栈组成的单个长带状物,经过改进成为迷你带状物的集合,然后成为迷你堆栈二聚体和长带状物片段的混合物。通过补充这些模型与细胞培养实验,得出了新的发现。首先,一个团块大小的 WPB 比更大的分泌颗粒分泌得更快。其次,微管去聚合将高尔基体解聚成迷你堆栈单体和二聚体的相等比例。然后模拟了支撑稳定二聚体存在的迷你堆栈单体结合/解结合的动力学。假设稳定的迷你堆栈二聚体和单体在带状物内持续存在,导致最终模型预测高尔基体的“呼吸”排列,其中较长结构内的单体和二聚体迷你堆栈经历连续的连接/解连接,与实验观察到的 WPB 大小分布一致。

结论

假设的高尔基体组织与可量化的分泌产物相对应。最佳拟合的高尔基体模型,考虑到稳定的迷你堆栈二聚体,与高度动态的带状结构一致,能够快速重新排列。因此,我们的建模工作预测,在细粒度水平上,高尔基体带状物比通常认为的更复杂。未来的实验将证实这种带状物组织是否是内皮细胞特异性的,还是脊椎动物细胞的一般特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd8/9102599/f5eaf281e11e/12915_2022_1305_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验