Suppr超能文献

海洋大西洋和太平洋中铁锰沉积物及其相关沉积物中微生物多样性的空间格局。

Spatial patterns of microbial diversity in Fe-Mn deposits and associated sediments in the Atlantic and Pacific oceans.

机构信息

Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil.

Rothamsted Research, Harpenden, England, United Kingdom of Great Britain and Northern Ireland.

出版信息

Sci Total Environ. 2022 Sep 1;837:155792. doi: 10.1016/j.scitotenv.2022.155792. Epub 2022 May 10.

Abstract

Mining of deep-sea Fe-Mn deposits will remove crusts and nodules from the seafloor. The growth of these minerals takes millions of years, yet little is known about their microbiome. Besides being key elements of the biogeochemical cycles and essential links of food and energy to deep-sea, microbes have been identified to affect manganese oxide formation. In this study, we determined the composition and diversity of Bacteria and Archaea in deep-sea Fe-Mn crusts, nodules, and associated sediments from two areas in the Atlantic Ocean, the Tropic Seamount and the Rio Grande Rise. Samples were collected using ROV and dredge in 2016 and 2018 oceanographic campaigns, and the 16S rRNA gene was sequenced using Illumina platform. Additionally, we compared our results with microbiome data of Fe-Mn crusts, nodules, and sediments from Clarion-Clipperton Zone and Takuyo-Daigo Seamount in the Pacific Ocean. We found that Atlantic seamounts harbor an unusual and unknown Fe-Mn deposit microbiome with lower diversity and richness compared to Pacific areas. Crusts and nodules from Atlantic seamounts have unique taxa (Alteromonadales, Nitrospira, and Magnetospiraceae) and a higher abundance of potential metal-cycling bacteria, such as Betaproteobacteriales and Pseudomonadales. The microbial beta-diversity from Atlantic seamounts was clearly grouped into microhabitats according to sediments, crusts, nodules, and geochemistry. Despite the time scale of million years for these deposits to grow, a combination of environmental settings played a significant role in shaping the microbiome of crusts and nodules. Our results suggest that microbes of Fe-Mn deposits are key in biogeochemical reactions in deep-sea ecosystems. These findings demonstrate the importance of microbial community analysis in environmental baseline studies for areas within the potential of deep-sea mining.

摘要

深海铁锰矿床的开采将从海底去除壳层和结核。这些矿物质的生长需要数百万年的时间,但人们对它们的微生物组知之甚少。除了是生物地球化学循环的关键元素和深海食物和能量的重要环节外,微生物已被确定会影响氧化锰的形成。在这项研究中,我们确定了大西洋两个地区(热带海山和里奥格兰德海脊)深海铁锰壳层、结核和相关沉积物中细菌和古菌的组成和多样性。这些样本是在 2016 年和 2018 年的海洋考察中使用 ROV 和挖泥船采集的,并使用 Illumina 平台对 16S rRNA 基因进行了测序。此外,我们将我们的结果与太平洋克拉里昂-克利珀顿区和竹永-大洞海山的铁锰壳层、结核和沉积物的微生物组数据进行了比较。我们发现,与太平洋地区相比,大西洋海山拥有一个不寻常且未知的铁锰矿床微生物组,其多样性和丰富度较低。来自大西洋海山的壳层和结核具有独特的类群(交替单胞菌目、硝化螺旋菌和磁螺菌科)和更高丰度的潜在金属循环细菌,如β-变形杆菌目和假单胞菌目。根据沉积物、壳层、结核和地球化学,大西洋海山的微生物β多样性明显分为微生境。尽管这些矿床的生长时间跨度为百万年,但环境条件的组合对壳层和结核微生物组的形成起着重要作用。我们的研究结果表明,铁锰矿床的微生物是深海生态系统生物地球化学反应的关键。这些发现表明,在深海采矿潜力区域内,微生物群落分析在环境基线研究中具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验