Suppr超能文献

从血浆细胞外囊泡中提取的用于检测铍暴露的现实生物标志物。

Realistic biomarkers from plasma extracellular vesicles for detection of beryllium exposure.

机构信息

Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, TX75708, USA.

Department of Medicine, National Jewish Health, Denver, CO, USA.

出版信息

Int Arch Occup Environ Health. 2022 Oct;95(8):1785-1796. doi: 10.1007/s00420-022-01871-7. Epub 2022 May 12.

Abstract

PURPOSE

Exposures related to beryllium (Be) are an enduring concern among workers in the nuclear weapons and other high-tech industries, calling for regular and rigorous biological monitoring. Conventional biomonitoring of Be in urine is not informative of cumulative exposure nor health outcomes. Biomarkers of exposure to Be based on non-invasive biomonitoring could help refine disease risk assessment. In a cohort of workers with Be exposure, we employed blood plasma extracellular vesicles (EVs) to discover novel biomarkers of exposure to Be.

METHODS

EVs were isolated from plasma using size-exclusion chromatography and subjected to mass spectrometry-based proteomics. A protein-based classifier was developed using LASSO regression and validated by ELISA.

RESULTS

We discovered a dual biomarker signature comprising zymogen granule protein 16B and putative protein FAM10A4 that differentiated between Be-exposed and -unexposed subjects. ELISA-based quantification of the biomarkers in an independent cohort of samples confirmed higher expression of the signature in the Be-exposed group, displaying high predictive accuracy (AUROC = 0.919). Furthermore, the biomarkers efficiently discriminated high- and low-exposure groups (AUROC = 0.749).

CONCLUSIONS

This is the first report of EV biomarkers associated with Be exposure and exposure levels. The biomarkers could be implemented in resource-limited settings for Be exposure assessment.

摘要

目的

铍(Be)暴露是核武器和其他高科技行业工人持续关注的问题,需要定期进行严格的生物监测。常规的尿铍生物监测不能提供累积暴露情况和健康结果的信息。基于非侵入性生物监测的 Be 暴露生物标志物可以帮助完善疾病风险评估。在一组有 Be 暴露的工人中,我们利用血浆细胞外囊泡(EVs)来发现 Be 暴露的新型生物标志物。

方法

使用排阻色谱法从血浆中分离 EVs,并进行基于质谱的蛋白质组学分析。使用 LASSO 回归开发基于蛋白质的分类器,并通过 ELISA 进行验证。

结果

我们发现了一个由酶原颗粒蛋白 16B 和假定蛋白 FAM10A4 组成的双重生物标志物特征,可区分 Be 暴露和未暴露的受试者。在另一个独立的样本队列中,基于 ELISA 的定量检测证实了该标志物在 Be 暴露组中的高表达,显示出高预测准确性(AUROC=0.919)。此外,该标志物能够有效区分高暴露和低暴露组(AUROC=0.749)。

结论

这是首次报道与 Be 暴露和暴露水平相关的 EV 生物标志物。这些生物标志物可在资源有限的情况下用于 Be 暴露评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f36/9489591/959aa6fcd3cd/420_2022_1871_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验