Suppr超能文献

计算机模拟 ACE2 突变分析,以检查肺癌患者对 COVID-19 的易感性。

In silico mutational analysis of ACE2 to check the susceptibility of lung cancer patients towards COVID-19.

机构信息

School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.

Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.

出版信息

Sci Rep. 2022 May 12;12(1):7798. doi: 10.1038/s41598-022-11805-5.

Abstract

Being the second major cause of death worldwide, lung cancer poses a significant threat to the health of patients. This worsened during the era of pandemic since lung cancer is found to be more prone to SARS-CoV-2 infection. Many recent studies imply a high frequency of COVID-19 infection associated severe outcome. However, molecular studies are still lacking in this respect. Hence the current study is designed to investigate the binding affinities of ACE2 lung cancer mutants with the viral spike protein to find the susceptibility of respective mutants carrying patients in catching the virus. Quite interestingly, our study found lesser binding affinities of all the selected mutants thus implying that these cancer patients might be less affected by the virus than others. These results are opposed to the recent studies' propositions and open new avenues for more in-depth studies.

摘要

作为全球第二大死亡原因,肺癌对患者的健康构成了重大威胁。在大流行时期,这种情况更加恶化,因为已经发现肺癌更容易感染 SARS-CoV-2。许多最近的研究表明,COVID-19 感染与严重后果相关的频率很高。然而,在这方面仍然缺乏分子研究。因此,目前的研究旨在研究 ACE2 肺癌突变体与病毒刺突蛋白的结合亲和力,以发现携带患者的相应突变体感染病毒的易感性。有趣的是,我们的研究发现所有选定的突变体的结合亲和力都较低,这意味着这些癌症患者可能比其他人受到病毒的影响较小。这些结果与最近的研究提出的观点相反,并为更深入的研究开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1104/9098448/042043614862/41598_2022_11805_Fig9_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验