Suppr超能文献

皮层网络内部和之间的相互作用,支持多感觉学习及其由于音乐专业知识而产生的重组。

Interaction within and between cortical networks subserving multisensory learning and its reorganization due to musical expertise.

机构信息

Department of Psychology, University of Cyprus, P.O. Box 20537, CY 1678, Nicosia, Cyprus.

School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.

出版信息

Sci Rep. 2022 May 12;12(1):7891. doi: 10.1038/s41598-022-12158-9.

Abstract

Recent advancements in the field of network science allow us to quantify inter-network information exchange and model the interaction within and between task-defined states of large-scale networks. Here, we modeled the inter- and intra- network interactions related to multisensory statistical learning. To this aim, we implemented a multifeatured statistical learning paradigm and measured evoked magnetoencephalographic responses to estimate task-defined state of functional connectivity based on cortical phase interaction. Each network state represented the whole-brain network processing modality-specific (auditory, visual and audiovisual) statistical learning irregularities embedded within a multisensory stimulation stream. The way by which domain-specific expertise re-organizes the interaction between the networks was investigated by a comparison of musicians and non-musicians. Between the modality-specific network states, the estimated connectivity quantified the characteristics of a supramodal mechanism supporting the identification of statistical irregularities that are compartmentalized and applied in the identification of uni-modal irregularities embedded within multisensory stimuli. Expertise-related re-organization was expressed by an increase of intra- and a decrease of inter-network connectivity, showing increased compartmentalization.

摘要

网络科学领域的最新进展使我们能够量化网络间的信息交换,并对大规模网络中特定任务状态的内部和之间的相互作用进行建模。在这里,我们对与多感觉统计学习相关的网络间和网络内相互作用进行了建模。为此,我们实施了一个多特征统计学习范式,并测量了诱发的脑磁图反应,以根据皮质相位相互作用来估计基于功能连接的任务定义状态。每个网络状态代表整个大脑网络处理特定模态(听觉、视觉和视听)的统计学习不规则性,这些不规则性嵌入在多感觉刺激流中。通过比较音乐家和非音乐家,研究了特定领域的专业知识如何重新组织网络之间的相互作用。在特定于模态的网络状态之间,估计的连接量化了支持识别统计不规则性的超模态机制的特征,这些不规则性被划分并应用于识别嵌入多感觉刺激中的单模态不规则性。与专业知识相关的重新组织表现为网络内和网络间连接的增加和减少,显示出更高的划分程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ab6/9098427/568a02ada917/41598_2022_12158_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验