Suppr超能文献

学习卷积网络中的多频特征进行乳腺 X 线摄影分类。

Learning multi-frequency features in convolutional network for mammography classification.

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People's Republic of China.

出版信息

Med Biol Eng Comput. 2022 Jul;60(7):2051-2062. doi: 10.1007/s11517-022-02582-4. Epub 2022 May 13.

Abstract

Breast cancer is a common life-threatening disease among women. Computer-aided methods can provide second opinion or decision support for early diagnosis in mammography images. However, the whole images classification is highly challenging due to small sizes of lesion and slow contrast between lesions and fibro-glandular tissue. In this paper, inspired by conventional machine learning methods, we present a Multi Frequency Attention Network (MFA-Net) to highlight the salient features. The network decomposes the features into low spatial frequency components and high spatial frequency components, and then recalibrates discriminating features based on two-dimensional Discrete Cosine Transform in two different frequency parts separately. Low spatial frequency features help determine if there is a tumor while high spatial frequency features help focus more on the margin of the tumor. Our studies empirically show that compared to traditional convolutional neural network (CNN), the proposed method mitigates the influence of the margin of pectoral muscle and breast in mammography, which brings significant improvement. For malignant and benign classification, by using transfer learning, the proposed MFA-Net achieves the AUC index 91.71% on the INbreast dataset.

摘要

乳腺癌是女性常见的危及生命的疾病。计算机辅助方法可以为乳房 X 光图像的早期诊断提供第二意见或决策支持。然而,由于病变的小尺寸和病变与纤维腺体组织之间的对比度低,整个图像分类极具挑战性。在本文中,我们受传统机器学习方法的启发,提出了一种多频注意力网络(MFA-Net)来突出显著特征。该网络将特征分解为低空间频率分量和高空间频率分量,然后分别在两个不同的频率部分基于二维离散余弦变换重新校准判别特征。低空间频率特征有助于确定是否存在肿瘤,而高空间频率特征则有助于更关注肿瘤的边缘。我们的研究经验表明,与传统的卷积神经网络(CNN)相比,所提出的方法减轻了乳房 X 光片中胸肌和乳房边缘的影响,从而带来了显著的改进。对于恶性和良性分类,通过使用迁移学习,所提出的 MFA-Net 在 INbreast 数据集上实现了 91.71%的 AUC 指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验