文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images.

作者信息

Zhang Mengyan, Wang Cong, Cai Li, Zhao Jiyun, Xu Ye, Xing Jiacheng, Sun Jianghong, Zhang Yan

机构信息

School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150040, China.

出版信息

Comput Struct Biotechnol J. 2023 Aug 18;22:17-26. doi: 10.1016/j.csbj.2023.08.012. eCollection 2023.


DOI:10.1016/j.csbj.2023.08.012
PMID:37655162
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10465855/
Abstract

The status of hormone receptors (HR) at the molecular level is crucial for accurate diagnosis and effective treatment of breast cancer. Meanwhile, mammography is an effective screening method for detecting breast cancer, which significantly improve survival. However, diagnosing the molecular status of breast cancer involves a pathological biopsy, which can affect the accuracy of the diagnosis. To non-invasively diagnose the hormone receptor (HR) status of breast cancer and reduced manual annotation, we proposed a weakly supervised deep learning framework BSNet which detected breast cancer with HR status and benign tumors. BSNet was trained on 2321 multi-view mammography cases from female undergoing digital mammography for the general population at Harbin Medical University Cancer Hospital in Heilongjiang Province during the period 2017-2018 and was validated on the external cohort. The average AUCs of BSNet on the test set and the external validation set were 0.89 and 0.92, respectively. BSNet demonstrated excellent performance in non-invasive breast cancer diagnosis with HR status, using multiple mammography views without pixel annotation. Furthermore, we developed a web server (http://bsnet.edbc.org) for easy use. BSNet described high-dimensional mammography of breast cancer subtypes, which helped inform early management options.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/7632395a0e68/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/12f29f05aa40/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/deedbf0701e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/f5d2bacf16b9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/5cf140015c56/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/df33ae6b2519/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/7632395a0e68/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/12f29f05aa40/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/deedbf0701e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/f5d2bacf16b9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/5cf140015c56/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/df33ae6b2519/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afcc/10465855/7632395a0e68/gr5.jpg

相似文献

[1]
Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images.

Comput Struct Biotechnol J. 2023-8-18

[2]
Deep learning modeling using mammography images for predicting estrogen receptor status in breast cancer.

Am J Transl Res. 2024-6-15

[3]
Weakly-supervised deep learning for ultrasound diagnosis of breast cancer.

Sci Rep. 2021-12-21

[4]
A Multi-million Mammography Image Dataset and Population-Based Screening Cohort for the Training and Evaluation of Deep Neural Networks-the Cohort of Screen-Aged Women (CSAW).

J Digit Imaging. 2020-4

[5]
Attention-Based Deep Learning System for Classification of Breast Lesions-Multimodal, Weakly Supervised Approach.

Cancers (Basel). 2023-5-10

[6]
Deep learning modeling using normal mammograms for predicting breast cancer risk.

Med Phys. 2019-11-19

[7]
Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.

J Magn Reson Imaging. 2019-3-29

[8]
[Establishment of a deep feature-based classification model for distinguishing benign and malignant breast tumors on full-filed digital mammography].

Nan Fang Yi Ke Da Xue Xue Bao. 2019-1-30

[9]
Deep learning analysis of contrast-enhanced spectral mammography to determine histoprognostic factors of malignant breast tumours.

Eur Radiol. 2022-7

[10]
One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study.

Lancet Oncol. 2018-10-12

引用本文的文献

[1]
Radiogenomics: bridging the gap between imaging and genomics for precision oncology.

MedComm (2020). 2024-9-9

[2]
Predicting Pathological Characteristics of HER2-Positive Breast Cancer from Ultrasound Images: a Deep Ensemble Approach.

J Imaging Inform Med. 2025-4

本文引用的文献

[1]
A divide and conquer approach to maximise deep learning mammography classification accuracies.

PLoS One. 2023

[2]
Optimization Algorithms and Machine Learning Techniques in Medical Image Analysis.

Math Biosci Eng. 2023-1-13

[3]
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology.

Semin Cancer Biol. 2023-6

[4]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[5]
Breast Cancer Detection in Mammography Images Using Deep Convolutional Neural Networks and Fuzzy Ensemble Modeling Techniques.

Diagnostics (Basel). 2022-7-28

[6]
Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening.

J Natl Cancer Inst. 2022-10-6

[7]
Digital breast tomosynthesis-based peritumoral radiomics approaches in the differentiation of benign and malignant breast lesions.

Diagn Interv Radiol. 2022-5

[8]
Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty.

NPJ Precis Oncol. 2022-6-21

[9]
Characterization of Weakly Hormone Receptor (HR)-Positive, HER2-Negative Breast Cancer and Current Treatment Strategies.

Clin Breast Cancer. 2022-8

[10]
DeepLN: A Multi-Task AI Tool to Predict the Imaging Characteristics, Malignancy and Pathological Subtypes in CT-Detected Pulmonary Nodules.

Front Oncol. 2022-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索