Wang Yichao, Ye Luhan, Chen Xi, Li Xin
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
JACS Au. 2022 Mar 29;2(4):886-897. doi: 10.1021/jacsau.2c00009. eCollection 2022 Apr 25.
Li dendrite penetration, and associated microcrack propagation, at high current densities is one main challenge to the stable cycling of solid-state batteries. The interfacial decomposition reaction between Li dendrite and a solid electrolyte was recently used to suppress Li dendrite penetration through a novel effect of "dynamic stability". Here we use a two-parameter space to classify electrolytes and propose that the effect may require the electrolyte to occupy a certain region in the space, with the principle of delicately balancing the two property metrics of a sufficient decomposition energy with the Li metal and a low critical mechanical modulus. Furthermore, in our computational prediction prepared using a combination of high-throughput computation and machine learning, we show that the positions of electrolytes in such a space can be controlled by the chemical composition of the electrolyte; the compositions can also be attained by experimental synthesis using core-shell microstructures. The designed electrolytes following this principle further demonstrate stable long cycling from 10 000 to 20 000 cycles at high current densities of 8.6-30 mA/cm in solid-state batteries, while in contrast the control electrolyte with a nonideal position in the two-parameter space showed a capacity decay that was faster by at least an order of magnitude due to Li dendrite penetration.
在高电流密度下锂枝晶的穿透以及相关的微裂纹扩展是固态电池稳定循环的一个主要挑战。最近,锂枝晶与固体电解质之间的界面分解反应通过一种“动态稳定性”的新效应被用于抑制锂枝晶的穿透。在这里,我们使用一个双参数空间对电解质进行分类,并提出这种效应可能要求电解质占据该空间中的特定区域,其原理是精细平衡与锂金属足够的分解能和低临界机械模量这两个性能指标。此外,在我们使用高通量计算和机器学习相结合所做的计算预测中,我们表明电解质在这样一个空间中的位置可以通过电解质的化学成分来控制;这些成分也可以通过使用核壳微结构的实验合成来获得。遵循这一原理设计的电解质在固态电池中于8.6 - 30 mA/cm²的高电流密度下进一步展示了从10000到20000次循环的稳定长循环,而相比之下,在双参数空间中处于非理想位置的对照电解质由于锂枝晶的穿透显示出至少快一个数量级的容量衰减。