Xiong Bing-Qing, Chen Shunqiang, Luo Xuan, Nian Qingshun, Zhan Xiaowen, Wang Chengwei, Ren Xiaodi
Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Anhui, 230026, China.
College of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China.
Adv Sci (Weinh). 2022 Jun;9(18):e2105924. doi: 10.1002/advs.202105924. Epub 2022 Apr 28.
Solid-state electrolytes (SSEs) hold a critical role in enabling high-energy-density and safe rechargeable batteries with Li metal anode. Unfortunately, nonuniform lithium deposition and dendrite penetration due to poor interfacial solid-solid contact are hindering their practical applications. Here, solid-state lithium naphthalenide (Li-Naph(s)) is introduced as a plastic monolithic mixed-conducting interlayer (PMMCI) between the garnet electrolyte and the Li anode via a facile cold process. The thin PMMCI shows a well-ordered layered crystalline structure with excellent mixed-conducting capability for both Li (4.38 × 10 S cm ) and delocalized electrons (1.01 × 10 S cm ). In contrast to previous composite interlayers, this monolithic material enables an intrinsically homogenous electric field and Li transport at the Li/garnet interface, thus significantly reducing the interfacial resistance and achieving uniform and dendrite-free Li anode plating/stripping. As a result, Li symmetric cells with the PMMCI-modified garnet electrolyte show highly stable cycling for 1200 h at 0.2 mA cm and 500 h at a high current density of 1 mA cm . The findings provide a new interface design strategy for solid-state batteries using monolithic mixed-conducting interlayers.
固态电解质(SSEs)在实现具有锂金属负极的高能量密度和安全可充电电池方面起着关键作用。不幸的是,由于界面固-固接触不良导致的锂不均匀沉积和枝晶穿透阻碍了它们的实际应用。在此,通过简便的冷工艺将固态萘锂(Li-Naph(s))作为石榴石电解质和锂负极之间的塑料整体混合导电中间层(PMMCI)引入。薄的PMMCI呈现出有序的层状晶体结构,对Li(4.38×10 S cm )和离域电子(1.01×10 S cm )都具有优异的混合导电能力。与先前的复合中间层相比,这种整体材料在Li/石榴石界面实现了本质上均匀的电场和Li传输,从而显著降低了界面电阻,并实现了均匀且无枝晶的锂负极电镀/剥离。结果,具有PMMCI修饰石榴石电解质的锂对称电池在0.2 mA cm 下显示出1200 h的高度稳定循环,在1 mA cm 的高电流密度下显示出500 h的稳定循环。这些发现为使用整体混合导电中间层的固态电池提供了一种新的界面设计策略。