文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学分析 TRPV 通道家族在透明细胞肾细胞癌中的预后和生物学功能。

Multi-Omics Analysis of the Prognosis and Biological Function for TRPV Channel Family in Clear Cell Renal Cell Carcinoma.

机构信息

Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Immunol. 2022 Apr 26;13:872170. doi: 10.3389/fimmu.2022.872170. eCollection 2022.


DOI:10.3389/fimmu.2022.872170
PMID:35558077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9086597/
Abstract

BACKGROUND: The transient receptor potential vanilloid (TRPV) channels family, TRPV1-6, has been identified to profoundly affect a wide spectrum of pathological processes in various cancers. However, the biological function and prognostic value of TRPVs in clear cell renal cell carcinoma (ccRCC) are still largely unknown. METHODS: We obtained the gene expression data and clinical information of 539 ccRCC patients from The Cancer Genome Atlas (TCGA) database. A series of databases were used for data processing and visualization, including GEPIA, GeneMANIA, MethSurv, GSCA, TIMER, and starBase databases. RESULTS: The mRNA expression of TRPV2/3 was upregulated while the expression of TRPV5/6 was downregulated in ccRCC tumor tissues. TRPV family members in ccRCC were rarely mutated (nearly 7 frequencies). The ROC curve showed that TRPV2/5/6 had a high diagnostic ability in discriminating ccRCC from the control samples (AUC>0.9). Higher levels of TRPV3 expression were associated with poor prognosis of ccRCC patients, while higher expression of TRPV4 was associated with favorable prognosis. The expression of TRPV3 in normal and ccRCC tissues was validated by Immunohistochemistry, and its expression was remarkably related to high histologic grade and advanced stage. Besides, TRPV3 exhibit a reduction of DNA methylation level with tumor progression, and 12 CpGs of TRPV3 were associated with a significant prognosis. In addition, TRPV3 expression was significantly associated with the accumulation of several tumor-infiltrating immune cells, especially regulatory T cells. Furthermore, high levels of TRPV3 induced the expression of immune checkpoints such as LAG3, CTLA4, PDCD1, and TIGIT. Finally, we predicted a key SNHG3/AL513497.1-miR-10b-5p-TRPV3 axis linking to carcinogenesis and progression of ccRCC. CONCLUSION: Our study may uncover TRPV channels-associated molecular mechanisms involved in the tumorigenesis and progression of ccRCC. TRPV family members might be diagnosed and prognostic markers and potential therapeutic targets for ccRCC patients.

摘要

背景:瞬时受体电位香草酸(TRPV)通道家族 TRPV1-6 已被确定对各种癌症的广泛病理过程产生深远影响。然而,TRPV 在透明细胞肾细胞癌(ccRCC)中的生物学功能和预后价值在很大程度上仍然未知。

方法:我们从癌症基因组图谱(TCGA)数据库中获得了 539 例 ccRCC 患者的基因表达数据和临床信息。使用一系列数据库进行数据处理和可视化,包括 GEPIA、GeneMANIA、MethSurv、GSCA、TIMER 和 starBase 数据库。

结果:ccRCC 肿瘤组织中 TRPV2/3 的 mRNA 表达上调,而 TRPV5/6 的表达下调。ccRCC 中 TRPV 家族成员很少发生突变(近 7 个频率)。ROC 曲线显示 TRPV2/5/6 在区分 ccRCC 与对照样本方面具有较高的诊断能力(AUC>0.9)。TRPV3 表达水平较高与 ccRCC 患者的预后不良相关,而 TRPV4 表达水平较高与预后良好相关。免疫组织化学验证了 TRPV3 在正常和 ccRCC 组织中的表达,其表达与高组织学分级和晚期显著相关。此外,TRPV3 的 DNA 甲基化水平随肿瘤进展而降低,TRPV3 的 12 个 CpG 与显著的预后相关。此外,TRPV3 的表达与多种肿瘤浸润免疫细胞的积累显著相关,尤其是调节性 T 细胞。此外,高水平的 TRPV3 诱导免疫检查点如 LAG3、CTLA4、PDCD1 和 TIGIT 的表达。最后,我们预测了一个关键的 SNHG3/AL513497.1-miR-10b-5p-TRPV3 轴,该轴与 ccRCC 的发生和进展有关。

结论:本研究可能揭示了 TRPV 通道相关的分子机制,参与了 ccRCC 的发生和发展。TRPV 家族成员可能是 ccRCC 患者的诊断和预后标志物,以及潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d91111aa78d3/fimmu-13-872170-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8d35ee29eb73/fimmu-13-872170-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/9a65857decd8/fimmu-13-872170-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d708e383952d/fimmu-13-872170-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/1377a1acc205/fimmu-13-872170-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/5fdfe22e737f/fimmu-13-872170-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/c2748ee17177/fimmu-13-872170-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/78638224531c/fimmu-13-872170-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8065c2640d46/fimmu-13-872170-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d54d403a854a/fimmu-13-872170-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8ddf050c9c43/fimmu-13-872170-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/499ec2852286/fimmu-13-872170-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/9364937fd664/fimmu-13-872170-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d91111aa78d3/fimmu-13-872170-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8d35ee29eb73/fimmu-13-872170-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/9a65857decd8/fimmu-13-872170-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d708e383952d/fimmu-13-872170-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/1377a1acc205/fimmu-13-872170-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/5fdfe22e737f/fimmu-13-872170-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/c2748ee17177/fimmu-13-872170-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/78638224531c/fimmu-13-872170-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8065c2640d46/fimmu-13-872170-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d54d403a854a/fimmu-13-872170-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/8ddf050c9c43/fimmu-13-872170-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/499ec2852286/fimmu-13-872170-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/9364937fd664/fimmu-13-872170-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/9086597/d91111aa78d3/fimmu-13-872170-g013.jpg

相似文献

[1]
Multi-Omics Analysis of the Prognosis and Biological Function for TRPV Channel Family in Clear Cell Renal Cell Carcinoma.

Front Immunol. 2022

[2]
Integrative analysis of TRPV family to prognosis and immune infiltration in renal clear cell carcinoma.

Channels (Austin). 2022-12

[3]
ERBB2 is a potential diagnostic and prognostic biomarker in renal clear cell carcinoma.

Sci Rep. 2024-10-1

[4]
Prognostic value of KLFs family genes in renal clear cell carcinoma.

Sci Rep. 2024-8-30

[5]
Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma.

BMC Cancer. 2021-1-5

[6]
Prognostic value and immune infiltration of the NEK family in clear cell renal cell carcinoma.

Medicine (Baltimore). 2024-7-19

[7]
NUF2 is correlated with a poor prognosis and immune infiltration in clear cell renal cell carcinoma.

BMC Urol. 2023-5-3

[8]
Clinical significance and oncogenic function of NR1H4 in clear cell renal cell carcinoma.

BMC Cancer. 2022-9-19

[9]
Upregulated GSDMB in Clear Cell Renal Cell Carcinoma Is Associated with Immune Infiltrates and Poor Prognosis.

J Immunol Res. 2021

[10]
Prognosis and biological function of SGOL1 in clear cell renal cell carcinoma: a multiomics analysis.

BMC Med Genomics. 2024-2-21

引用本文的文献

[1]
The prognostic and immune significance of in clear cell renal cell carcinoma.

Transl Cancer Res. 2025-2-28

[2]
: a potential diagnostic biomarker for lung squamous cell carcinoma.

Front Immunol. 2024

[3]
Prognosis and biological function of SGOL1 in clear cell renal cell carcinoma: a multiomics analysis.

BMC Med Genomics. 2024-2-21

[4]
Identification of Prognostic and Immune Characteristics of Two Lung Adenocarcinoma Subtypes Based on TRPV Channel Family Genes.

J Membr Biol. 2024-4

[5]
Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023).

Naunyn Schmiedebergs Arch Pharmacol. 2024-3

[6]
Pan-cancer analyses of clinical prognosis, immune infiltration, and immunotherapy efficacy for TRPV family using multi-omics data.

Heliyon. 2023-6-3

[7]
Competing endogenous RNA analysis identified lncRNA DSCR9 as a novel prognostic biomarker associated with metastasis and tumor microenvironment in renal cell carcinoma.

Oncol Lett. 2023-5-22

[8]
A Systematic Analysis of the Role of Unc-5 Netrin Receptor A (UNC5A) in Human Cancers.

Biomolecules. 2022-12-6

[9]
Identification of the common differentially expressed genes and pathogenesis between neuropathic pain and aging.

Front Neurosci. 2022-10-19

本文引用的文献

[1]
TRPV Protein Family-From Mechanosensing to Cancer Invasion.

Biomolecules. 2021-7-13

[2]
The Impact of TRPV1 on Cancer Pathogenesis and Therapy: A Systematic Review.

Int J Biol Sci. 2021

[3]
Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity.

Angiogenesis. 2021-8

[4]
TRPV4 Overexpression Promotes Metastasis Through Epithelial-Mesenchymal Transition in Gastric Cancer and Correlates with Poor Prognosis.

Onco Targets Ther. 2020-8-21

[5]
TRPV1 acts as a Tumor Suppressor and is associated with Immune Cell Infiltration in Clear Cell Renal Cell Carcinoma: evidence from integrated analysis.

J Cancer. 2020-7-25

[6]
TIMER2.0 for analysis of tumor-infiltrating immune cells.

Nucleic Acids Res. 2020-7-2

[7]
Emerging role of transient receptor potential (TRP) channels in cancer progression.

BMB Rep. 2020-3

[8]
DNA methylation in plants: mechanisms and tools for targeted manipulation.

New Phytol. 2020-7

[9]
Modeling clear cell renal cell carcinoma and therapeutic implications.

Oncogene. 2020-3-2

[10]
Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma.

Biomed Pharmacother. 2019-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索