Suppr超能文献

通过大气压等离子体射流产生的水相氧自由基实现胶体氢化纳米金刚石的羟基化和自组装。

Hydroxylation and self-assembly of colloidal hydrogenated nanodiamonds by aqueous oxygen radicals from atmospheric pressure plasma jet.

作者信息

Jirásek Vít, Stehlík Štěpán, Štenclová Pavla, Artemenko Anna, Rezek Bohuslav, Kromka Alexander

机构信息

Institute of Physics, Czech Academy of Sciences Cukrovarnická 10, 160 21 Prague 6 Czech Republic

Institute of Plasma Physics, Czech Academy of Sciences Za Slovankou 1782/3, 182 00 Prague 8 Czech Republic.

出版信息

RSC Adv. 2018 Nov 9;8(66):37681-37692. doi: 10.1039/c8ra07873d. eCollection 2018 Nov 7.

Abstract

Plasma chemical surface modification of nanoparticles in gas-liquid type reactors enables a controllable, specific, low-cost, and environmentally friendly alternative to wet chemistry methods or thermal and dry plasma treatments. Here the atmospheric pressure radio-frequency microplasma jet (µ-APPJ) operating with 0.6% O in He is used to deliver aqueous oxygen radicals (AOR) to the surface of ∼3 nm hydrogenated detonation nanodiamonds (H-DNDs) suspended in water. The AOR-treated H-DND samples are characterized by FTIR and XPS spectroscopies and by AFM and SEM imaging. The main chemical reaction mechanism is identified as the abstraction of surface hydrogen atoms by O or OH radicals and a consequent attachment of the OH group, thereby increasing concentration of alcohols, carboxyls, and aldehydes on the DND's surface. FTIR spectra reveal also a structural re-arrangement of the surface water on the AOR-treated H-DNDs. Yet zeta-potential of AOR-treated H-DNDs still remains positive (decreases from +45 mV to +30 mV). The chemical modification gives rise to formation of nanoscale chain-like aggregates when AOR-treated H-DNDs are deposited on Si substrate.

摘要

在气液型反应器中对纳米颗粒进行等离子体化学表面改性,为湿化学方法或热等离子体和冷等离子体处理提供了一种可控、特定、低成本且环保的替代方案。在此,使用在氦气中通入0.6%氧气运行的大气压射频微等离子体射流(µ-APPJ),将水性氧自由基(AOR)输送到悬浮于水中的约3纳米氢化爆轰纳米金刚石(H-DNDs)表面。经AOR处理的H-DND样品通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)以及原子力显微镜(AFM)和扫描电子显微镜(SEM)成像进行表征。主要化学反应机制被确定为表面氢原子被氧或羟基自由基夺取,随后羟基附着,从而增加了DND表面醇、羧基和醛的浓度。FTIR光谱还揭示了经AOR处理的H-DNDs表面水的结构重排。然而,经AOR处理的H-DNDs的zeta电位仍保持正值(从+45 mV降至+30 mV)。当经AOR处理的H-DNDs沉积在硅衬底上时,化学改性导致形成纳米级链状聚集体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66d5/9089410/67638e85bf02/c8ra07873d-f1.jpg

相似文献

2
Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.
ACS Nano. 2017 Nov 28;11(11):10924-10934. doi: 10.1021/acsnano.7b04647. Epub 2017 Nov 3.
3
Laser-Induced Modification of Hydrogenated Detonation Nanodiamonds in Ethanol.
Nanomaterials (Basel). 2021 Aug 31;11(9):2251. doi: 10.3390/nano11092251.
4
Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38842-38853. doi: 10.1021/acsami.7b14436. Epub 2017 Oct 26.
5
The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water.
Nanoscale. 2021 Sep 7;13(33):14110-14118. doi: 10.1039/d1nr04847c. Epub 2021 Aug 10.
6
Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment.
Environ Sci Process Impacts. 2014 Mar;16(3):518-23. doi: 10.1039/c3em00378g. Epub 2013 Dec 18.
7
Detonation Nanodiamonds as a New Tool for Phenol Detection in Aqueous Medium.
J Nanosci Nanotechnol. 2018 Aug 1;18(8):5448-5453. doi: 10.1166/jnn.2018.15382.
9

引用本文的文献

2
Surface Modification of Fluorescent Nanodiamonds for Biological Applications.
Nanomaterials (Basel). 2021 Jan 9;11(1):153. doi: 10.3390/nano11010153.

本文引用的文献

1
Predicting the impact of structural diversity on the performance of nanodiamond drug carriers.
Nanoscale. 2018 May 17;10(19):8893-8910. doi: 10.1039/c8nr01688g.
3
Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38842-38853. doi: 10.1021/acsami.7b14436. Epub 2017 Oct 26.
4
Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.
J Control Release. 2017 Sep 10;261:62-86. doi: 10.1016/j.jconrel.2017.05.033. Epub 2017 Jun 27.
5
Non-Thermal Plasma in Contact with Water: The Origin of Species.
Chemistry. 2016 Mar 1;22(10):3496-3505. doi: 10.1002/chem.201503771. Epub 2016 Feb 2.
6
Biomedical Applications of Nanodiamonds: An Overview.
J Nanosci Nanotechnol. 2015 Feb;15(2):972-88. doi: 10.1166/jnn.2015.9734.
7
Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery.
J Nanosci Nanotechnol. 2015 Feb;15(2):959-71. doi: 10.1166/jnn.2015.9742.
8
Interparticle Interactions and Self-Assembly of Functionalized Nanodiamonds.
J Phys Chem Lett. 2012 Apr 5;3(7):896-901. doi: 10.1021/jz300066j. Epub 2012 Mar 15.
9
Science and engineering of nanodiamond particle surfaces for biological applications (Review).
Biointerphases. 2015 Sep 5;10(3):030802. doi: 10.1116/1.4927679.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验