Wu Ping, Huang Min
School of Mathematics & Physics, Shandong Advanced Optoelectronic Materials and Technologies Engineering Laboratory, Qingdao University of Science and Technology Qingdao 266061 China.
Key Laboratory of Ferro and Piezoelectric Materials and Devices of Hubei Province, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
RSC Adv. 2023 Jan 26;13(6):3807-3817. doi: 10.1039/d2ra08028a. eCollection 2023 Jan 24.
Based on first-principles calculations, we compared the adsorption behaviors, electronic and magnetic properties of gas molecules (CO, NO, NO, O, NH, HO, H and N) adsorbed on Pt-embedded arsenene and pristine arsenene. Our calculations show the interactions between molecules and arsenene can be enhanced by substitution of a Pt atom, suggesting the potential application of Pt-doped arsenene in gas sensing, especially for detecting NO gas due to the largest adsorption energy and charge transfer between NH and Pt-doped arsenene. Among all the molecules considered, CO, NO, NO, O and NH molecules chemisorb on Pt-doped arsenene (these molecules physisorb on pristine arsenene) forming covalent Pt-C, Pt-N and Pt-O bonds, thus resulting in the elongation of C-O, N-O, O-O, N-H bonds in molecules. The magnetic moments of arsenene adsorbed with O, NO, and NO decrease or diminish after Pt doping. Such variation on magnetism before and after Pt doping is ascribed to significant charge transfer and strong hybridization between gas molecules and the underlying Pt atoms, indicating the magnetic properties of arsenene can be tuned by molecular adsorption and Pt doping. These findings suggest Pt-doped arsenene has potential applications in spintronic devices, catalysts and gas sensors.
基于第一性原理计算,我们比较了吸附在嵌入铂的砷烯和原始砷烯上的气体分子(CO、NO、NO₂、O₂、NH₃、H₂O、H₂和N₂)的吸附行为、电子和磁性特性。我们的计算表明,通过替换一个铂原子可以增强分子与砷烯之间的相互作用,这表明铂掺杂砷烯在气体传感方面具有潜在应用,特别是对于检测NO气体,因为NH₃与铂掺杂砷烯之间的吸附能和电荷转移最大。在所有考虑的分子中,CO、NO、NO₂、O₂和NH₃分子在铂掺杂砷烯上化学吸附(这些分子在原始砷烯上物理吸附),形成共价的Pt-C、Pt-N和Pt-O键,从而导致分子中C-O、N-O、O-O、N-H键的伸长。吸附有O₂、NO和NO₂的砷烯在铂掺杂后磁矩减小或消失。铂掺杂前后磁性的这种变化归因于气体分子与底层铂原子之间的显著电荷转移和强杂化,表明砷烯的磁性可以通过分子吸附和铂掺杂来调节。这些发现表明铂掺杂砷烯在自旋电子器件、催化剂和气体传感器方面具有潜在应用。