Suppr超能文献

Piezo1 调节人红细胞中剪切依赖型一氧化氮的产生。

Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes.

机构信息

Biorheology Research Laboratory, Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.

School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.

出版信息

Am J Physiol Heart Circ Physiol. 2022 Jul 1;323(1):H24-H37. doi: 10.1152/ajpheart.00185.2022. Epub 2022 May 13.

Abstract

Mature circulating red blood cells (RBCs) are classically viewed as passive participants in circulatory function, given erythroblasts eject their organelles during maturation. Endogenous production of nitric oxide (NO) and its effects are of particular significance; however, the integration between RBC sensation of the local environment and subsequent activation of mechano-sensitive signaling networks that generate NO remain poorly understood. The present study investigated endogenous NO production via the RBC-specific nitric oxide synthase isoform (RBC-NOS), connecting membrane strain with intracellular enzymatic processes. Isolated RBCs were obtained from apparently healthy humans. Intracellular NO was compared at rest and following shear (cellular deformation) using semiquantitative fluorescent imaging. Concurrently, RBC-NOS phosphorylation at its serine (Ser) residue was measured. The contribution of cellular deformation to shear-induced NO production in RBCs was determined by rigidifying RBCs with the thiol-oxidizing agent diamide; rigid RBCs exhibited significantly impaired (up to 80%) capacity to generate NO via RBC-NOS during shear. Standardizing membrane strain of rigid RBCs by applying increased shear did not normalize NO production, or RBC-NOS activation. Calcium imaging with fluo-4 revealed that diamide-treated RBCs exhibited a 42% impairment in Piezo1mediated calcium movement when compared with untreated RBCs. Pharmacological inhibition of Piezo1 with GsMTx4 during shear inhibited RBC-NOS activation in untreated RBCs, whereas Piezo1 activation with Yoda1 in the absence of shear stimulated RBC-NOS activation. Collectively, a novel, mechanically activated signaling pathway in mature RBCs is described. Opening of Piezo1 and subsequent influx of calcium appear to be required for endogenous production of NO in response to mechanical shear, which is accompanied by phosphorylation of RBC-NOS at Ser. The mechano-sensitive ion channel Piezo1 is expressed in enucleated red blood cells and provides a mechanism of shear-induced red cell nitric oxide production via nitric oxide synthase phosphorylation. Thiol oxidation of red cells decreases Piezo1-dependent calcium movement and thus impairs nitric oxide generation in response to mechanical force. The emerging descriptions of exclusively posttranslational signaling networks in circulating red cells as acute regulators of cell function support that these cells play an important role in cardiovascular physiology that extends beyond passive oxygen transport.

摘要

成熟的循环红细胞(RBC)通常被视为循环功能的被动参与者,因为红细胞在成熟过程中会排出其细胞器。内源性一氧化氮(NO)的产生及其作用具有特别重要的意义;然而,RBC 对局部环境的感知与随后激活产生 NO 的机械敏感信号网络之间的整合仍知之甚少。本研究通过 RBC 特异性一氧化氮合酶同工型(RBC-NOS)研究内源性 NO 的产生,将膜应变与细胞内酶促过程联系起来。从看似健康的人中获得分离的 RBC。使用半定量荧光成像技术在静止和剪切(细胞变形)时比较细胞内的 NO。同时,测量 RBC-NOS 在其丝氨酸(Ser)残基上的磷酸化。通过使用硫醇氧化剂二酰胺使 RBC 刚性化来确定细胞变形对 RBC 中剪切诱导的 NO 产生的贡献;刚性 RBC 在剪切过程中通过 RBC-NOS 产生 NO 的能力显著受损(高达 80%)。通过施加增加的剪切来标准化刚性 RBC 的膜应变并没有使 NO 产生或 RBC-NOS 激活正常化。用 fluo-4 进行钙成像显示,与未处理的 RBC 相比,用二酰胺处理的 RBC 中 Piezo1 介导的钙运动受损 42%。在剪切过程中用 GsMTx4 抑制 Piezo1 抑制了未处理 RBC 中 RBC-NOS 的激活,而在没有剪切的情况下用 Yoda1 激活 Piezo1 刺激了 RBC-NOS 的激活。总之,描述了一种成熟 RBC 中新型的机械激活信号通路。Piezo1 的开放和随后钙的内流似乎是机械剪切响应中内源性 NO 产生所必需的,这伴随着 RBC-NOS 在 Ser 上的磷酸化。无核红细胞表达机械敏感性离子通道 Piezo1,通过一氧化氮合酶磷酸化提供剪切诱导红细胞一氧化氮产生的机制。红细胞的硫醇氧化降低了 Piezo1 依赖性钙运动,从而损害了机械力响应中的一氧化氮生成。循环红细胞中仅翻译后信号网络的新兴描述作为细胞功能的急性调节剂,支持这些细胞在心血管生理学中发挥重要作用,超出了被动氧气运输的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验