Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
J Colloid Interface Sci. 2022 Sep 15;622:871-879. doi: 10.1016/j.jcis.2022.04.095. Epub 2022 Apr 22.
Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating CuO nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled CuO nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained CuO NP@CuHHTP heterojunction nanoarrays show high HO sensitivity of 8150.6 μA·mM·cm and satisfactory detection performances in application of measuring HO concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.
过渡金属氧化物/金属有机骨架异质结(TMO@MOF)结合了 MOFs 的大比表面积和 TMOs 的高催化活性和多功能性,在各种催化反应中表现出优异的性能。然而,目前 TMO@MOF 异质结的制备方法过于复杂,难以控制,这激发了人们开发简单、高度可控的方法来制备这种异质结的兴趣。在本研究中,我们提出了一种原位电化学还原方法,用于制备具有类石墨烯导电 MOF CuHHTP(HHTP 是 2,3,6,7,10,11-六羟基三联苯)的 CuO 纳米颗粒(NP)@CuHHTP 异质结纳米阵列。我们发现,通过施加不同的电化学还原电位,可以在 CuHHTP 上原位生长尺寸可控的 CuO 纳米颗粒。此外,所获得的 CuO NP@CuHHTP 异质结纳米阵列在检测尿液和血清样本中的 HO 浓度方面表现出高 HO 灵敏度(8150.6 μA·mM·cm)和良好的检测性能。本研究为基于 MOF 的异质结的合成提供了有前景的指导,可用于早期癌症诊断。