State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China; Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
Acta Biomater. 2022 Jul 15;147:221-234. doi: 10.1016/j.actbio.2022.05.008. Epub 2022 May 10.
Temporomandibular disorder (TMD) remained a huge clinical challenge, with high prevalence but limited, unstable, and only palliative therapeutic methods available. As one of the most vulnerable sites implicated in TMD, the temporomandibular joint disc (TMJD) displayed a complicated microstructure, region-specific fibrocartilaginous distribution, and poor regenerative property, which all further hindered its functional regeneration. To address the problem, with versatile and relatively simple electrospinning (ELS) technique, our study successfully fabricated a biomimetic, three-dimensional poly (ϵ-caprolactone) (PCL)/polylactide (PLA)/carbon nanotubes (CNTs) disc scaffold, whose biconcave gross anatomy and regionally anisotropic microstructure recapitulating those of the native disc. As in vitro results validated the superior mechanical, bioactive, and regenerative properties of the biomimetic scaffolds with optimal CNTs reinforcement, we further performed in vivo experiments. After verifying its biocompatibility and ectopic fibrochondrogenicity in nude mice subcutaneous implantation models, the scaffolds guided disc regeneration and subchondral bone protection were also confirmed orthotopically in rabbits TMJD defected areas, implying the pivotal role of morphological cues in contact-guided tissue regeneration. In conclusion, our work represents a significant advancement in complex, inhomogeneous tissue engineering, providing promising clinical solutions to intractable TMD ailments. STATEMENT OF SIGNIFICANCE: Complex tissue regeneration remains a huge scientific and clinical challenge. Although frequently implicated in temporomandibular joint disorder (TMD), functional regeneration of injured temporomandibular joint disc (TMJD) is extremely hard to achieve, mainly because of the complex anatomy and microstructure with regionally variant, anisotropic fiber alignments in the native disc. In this study, we developed the biomimetic electrospun scaffold with optimal CNTs reinforcement and regionally anisotropic fiber orientations. The excellent mechanical and bioactive properties were confirmed both in vitro and in vivo, effectively promoting defected discs regeneration in rabbits. Besides demonstrating the crucial role of morphological biomimicry in tissue engineering, our work also presents a feasible clinical solution for complex tissue regeneration.
颞下颌关节紊乱(TMD)仍然是一个巨大的临床挑战,其患病率很高,但治疗方法有限、不稳定,且仅为姑息性治疗。作为 TMD 中最脆弱的部位之一,颞下颌关节盘(TMJD)显示出复杂的微观结构、特定区域的纤维软骨分布和较差的再生特性,这进一步阻碍了其功能再生。为了解决这个问题,我们使用多功能且相对简单的静电纺丝(ELS)技术,成功地制造了一种仿生的、三维的聚(ε-己内酯)(PCL)/聚乳酸(PLA)/碳纳米管(CNTs)盘状支架,其双凹大体解剖结构和区域各向异性的微观结构再现了天然盘的结构。正如体外结果验证了具有最佳 CNTs 增强的仿生支架具有优异的机械、生物活性和再生特性一样,我们还进行了体内实验。在验证了其在裸鼠皮下植入模型中的生物相容性和异位纤维软骨形成能力后,我们还在兔 TMJD 缺陷区域中证实了支架引导的盘再生和软骨下骨保护作用,这表明形态学线索在接触引导组织再生中的关键作用。总之,我们的工作代表了复杂、不均匀组织工程的重大进展,为复杂的 TMD 疾病提供了有前途的临床解决方案。
复杂组织的再生仍然是一个巨大的科学和临床挑战。尽管经常与颞下颌关节紊乱(TMD)有关,但受伤的颞下颌关节盘(TMJD)的功能再生极其困难,主要是因为在天然盘的复杂解剖结构和微观结构中,存在着具有区域性差异的各向异性纤维排列。在这项研究中,我们开发了具有最佳 CNTs 增强和区域各向异性纤维取向的仿生静电纺丝支架。体外和体内都证实了其优异的机械和生物活性性能,有效地促进了兔 TMJD 缺陷盘的再生。除了证明形态仿生在组织工程中的关键作用外,我们的工作还为复杂组织的再生提供了一种可行的临床解决方案。