Zaki M Y, Sava F, Simandan I D, Buruiana A T, Mihai C, Velea A, Galca A C
National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania.
Faculty of Physics, University of Bucharest, Atomistilor 405, 077125, Magurele, Romania.
Sci Rep. 2022 May 13;12(1):7958. doi: 10.1038/s41598-022-12045-3.
CuSnS (CTS) is emerging as a promising absorber for the next generation thin film solar cells (TFSC) due to its excellent optical and electronic properties, earth-abundance and eco-friendly elemental composition. In addition, CTS can be used as precursor films for the CuZnSnS (CZTS) synthesis. The optical properties of CTS are influenced by stoichiometry, crystalline structure, secondary phases and crystallite size. Routes for obtaining CTS films with optimized properties for TFSC are still being sought. Here, the CTS thin films synthesized by magnetron sputtering on soda lime glass (SLG) using Cu and SnS targets in two different stacks, were studied. The SLG\Cu\SnS and SLG\SnS\Cu stacks were annealed in S and Sn + S atmospheres, at various temperatures. Both stacks show a polymorphic structure, and higher annealing temperatures favor the monoclinic CTS phase formation. Morphology is influenced by the stacking order since a SnS top layer generates several voids on the surface due to the evaporation of SnS, while a Cu top layer provides uniform and void-free surfaces. The films in the copper-capped stack annealed under Sn + S atmosphere have the best structural, morphological, compositional and optical properties, with tunable band gaps between 1.18 and 1.37 eV. Remarkably, secondary phases are present only in a very low percent (< 3.5%) in samples annealed at higher temperatures. This new synthesis strategy opens the way for obtaining CTS thin films for solar cell applications, that can be used also as intermediary stage for CZTS synthesis.
硫化铜锡(CTS)因其优异的光学和电子性能、丰富的地壳元素以及环保的元素组成,正成为下一代薄膜太阳能电池(TFSC)中一种很有前景的吸收层材料。此外,CTS还可作为合成硫化铜锌锡(CZTS)的前驱体薄膜。CTS的光学性能受化学计量比、晶体结构、次生相和微晶尺寸的影响。目前仍在寻找制备具有优化性能的TFSC用CTS薄膜的方法。在此,研究了利用铜靶和硫化锡靶在两种不同堆叠结构下,通过磁控溅射在钠钙玻璃(SLG)上合成的CTS薄膜。SLG\Cu\SnS和SLG\SnS\Cu堆叠结构在不同温度下于硫和锡+硫气氛中进行退火处理。两种堆叠结构均呈现多晶型结构,较高的退火温度有利于单斜晶系CTS相的形成。形貌受堆叠顺序的影响,因为硫化锡顶层由于硫化锡的蒸发会在表面产生多个孔隙,而铜顶层则提供均匀且无孔隙的表面。在锡+硫气氛下退火的铜帽堆叠结构中的薄膜具有最佳的结构、形貌、成分和光学性能,其带隙在1.18至1.37电子伏特之间可调。值得注意的是,在较高温度下退火的样品中次生相的含量仅非常低(<3.5%)。这种新的合成策略为制备用于太阳能电池应用的CTS薄膜开辟了道路,该薄膜也可作为CZTS合成的中间阶段。