脯氨酸氧化支持复合物 I 被抑制时的线粒体 ATP 生成。
Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited.
机构信息
Department of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary.
Oroboros Instruments, 6020 Innsbruck, Austria.
出版信息
Int J Mol Sci. 2022 May 4;23(9):5111. doi: 10.3390/ijms23095111.
The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and FF-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the FF-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the FF-ATPase even under CI inhibition.
脯氨酸氧化为吡咯啉-5-羧酸(P5C)会导致电子转移到表达脯氨酸脱氢酶(ProDH)的线粒体中的泛醌。这种电子转移支持复合物 CIII 和 CIV,从而产生质子动力。P5C 的进一步分解代谢形成谷氨酸,为柠檬酸循环提供燃料,从而产生维持氧化磷酸化的还原当量。然而,由于 NAD 的需求,P5C 和谷氨酸分解代谢依赖于 CI 活性。NextGen-O2k(Oroboros Instruments)用于测量各种小鼠组织分离的线粒体中脯氨酸的氧化。同时测量耗氧量、膜电位、NADH 和泛醌氧化还原状态与 ProDH 活性和 FF-ATPase 方向性相关联。脯氨酸分解代谢产生了足够高的膜电位,能够维持 FF-ATPase 在正向模式下的运转。在 CI 抑制的小鼠肝和肾线粒体中观察到这种情况,这些线粒体表现出高水平的脯氨酸氧化和 ProDH 活性。在缺氧或 CIII 或 CIV 被抑制时,没有观察到这种情况。Duroquinone 为 CIII 和 CIV 提供燃料,部分再现了脯氨酸的作用。然而,过量的谷氨酸不能再现脯氨酸的作用,这表明谷氨酸从脯氨酸转化的上游过程参与其中。ProDH 抑制剂四氢-2-呋喃酸和在较小程度上 S-5-氧代-2-四氢呋喃羧酸消除了所有脯氨酸的作用。数据表明,ProDH 指导的脯氨酸分解代谢可以产生足够的 CIII 和 CIV 质子泵浦,从而支持 FF-ATPase 即使在 CI 抑制下也能产生 ATP。